Smooth Parametric Surfaces and n-Sided Patches

The theory of ‘geometric continuity’ within the subject of CAGD is reviewed. In particular, we are concerned with how parametric surface patches for CAGD can be pieced together to form a smooth Ck surface. The theory is applied to the problem of filling an n-sided hole occurring within a smooth rectangular patch complex. A number of solutions to this problem are surveyed.

[1]  A. A. Ball,et al.  A matrix approach to the analysis of recursively generated B-spline surfaces , 1986 .

[2]  W. F. Ames Solid modelling with DESIGNBASE : H. Chiyokura, Addison Wesley, Reading, Mass., 1988. 300 pp., US $39.75. ISBN 0-201-19245-4 , 1990 .

[3]  Tamás Várady Survey and new results in n-sided patch generation , 1987 .

[4]  A. K. Jones,et al.  Nonrectangular surface patches with curvature continuity , 1988 .

[5]  Ja Gregory,et al.  Polygonal patches of high order continuity , 1987 .

[6]  Brian A. Barsky,et al.  Geometric Continuity of Parametric Curves , 1984 .

[7]  R. D. Parslow,et al.  Advanced Computer Graphics , 1971, Springer US.

[8]  Tamás Várady,et al.  Overlap patches: a new scheme for interpolating curve networks with n-sided regions , 1991, Comput. Aided Geom. Des..

[9]  M. A. Sabin,et al.  Some negative results in N sided patches , 1986 .

[10]  Robert E. Barnhill,et al.  Surfaces in Computer Aided Geometric Design , 1983 .

[11]  Gerald Farin,et al.  Geometric modeling : algorithms and new trends , 1987 .

[12]  Gerald E. Farin,et al.  A construction for visualC1 continuity of polynomial surface patches , 1982, Comput. Graph. Image Process..

[13]  Andrew J. Worsey A modified C2 Coons' patch , 1984, Comput. Aided Geom. Des..

[14]  Hans Hagen,et al.  Automatic smoothing with geometric surface patches , 1987, Comput. Aided Geom. Des..

[15]  J. A. Gregory,et al.  A C1 triangular interpolation patch for computer-aided geometric design , 1980 .

[16]  John A. Gregory,et al.  Geometric continuity and convex combination patches , 1987, Comput. Aided Geom. Des..

[17]  S. L. Lee,et al.  Geometrically continuous surfaces defind parametrically from piecewise polynomials , 1987 .

[18]  Hiroaki Chiyokura,et al.  Design of solids with free-form surfaces , 1983, SIGGRAPH.

[19]  G. Ris,et al.  Continuity of biparametric surface patches , 1976 .

[20]  Tom Lyche,et al.  Mathematical methods in computer aided geometric design , 1989 .

[21]  M. Sabin,et al.  Behaviour of recursive division surfaces near extraordinary points , 1978 .

[22]  A. Derose Geometric continuity: a parametrization independent measure of continuity for computer aided geometric design (curves, surfaces, splines) , 1985 .

[23]  Jörg M. Hahn Geometric continuous patch complexes , 1989, Comput. Aided Geom. Des..

[24]  M. A. Sabin Non-Rectangular Surface Patches Suitable for Inclusion in a B-Spline Surface , 1983, Eurographics.

[25]  S. A. Coons SURFACES FOR COMPUTER-AIDED DESIGN OF SPACE FORMS , 1967 .

[26]  Tim N. T. Goodman,et al.  Closed surfaces defined from biquadratic splines , 1991 .

[27]  Ramon F. Sarraga,et al.  Errata: G1 interpolation of generally unrestricted cubic Bézier curves , 1989, Comput. Aided Geom. Des..

[28]  John A. Gregory,et al.  A pentagonal surface patch for computer aided geometric design , 1984, Comput. Aided Geom. Des..

[29]  M. A. Watkins,et al.  Problems in geometric continuity , 1988 .

[30]  Anthony D. DeRose Geometric Continuity: A Parameterization Independent Measure of , 1985 .

[31]  Jörg Peters,et al.  Local cubic and bicubic C1 surface interpolation with linearly varying boundary normal , 1990, Comput. Aided Geom. Des..

[32]  Gary J. Herron,et al.  Smooth closed surfaces with discrete triangular interpolants , 1985, Comput. Aided Geom. Des..

[33]  Dingyuan Liu,et al.  GC1 continuity conditions between two adjacent rational Bézier surface patches , 1990, Comput. Aided Geom. Des..

[34]  Josef Hoschek,et al.  GC 1 continuity conditions between adjacent rectangular and triangular Bézier surface patches , 1989 .

[35]  Fujio Yamaguchi,et al.  Curves and Surfaces in Computer Aided Geometric Design , 1988, Springer Berlin Heidelberg.

[36]  Nira Dyn,et al.  Piecewise polynomial spaces and geometric continuity of curves , 1989 .

[37]  Jarke J. van Wijk,et al.  Bicubic patches for approximating non-rectangular control-point meshes , 1986, Comput. Aided Geom. Des..

[38]  B. Barsky,et al.  An Intuitive Approach to Geometric Continuity for Parametric Curves and Surfaces (Extended Abstract) , 1985 .

[39]  A. A. Ball,et al.  Recursively generated B-spline surfaces , 1984 .

[40]  Tony DeRose,et al.  Necessary and sufficient conditions for tangent plane continuity of Bézier surfaces , 1990, Comput. Aided Geom. Des..

[41]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[42]  J. A. Gregory The Mathematics of Surfaces. , 1987 .

[43]  H Chiyokura,et al.  Localized surface interpolation method for irregular meshes , 1986 .

[44]  Ramon F. Sarraga,et al.  G1 interpolation of generally unrestricted cubic Bézier curves , 1987, Comput. Aided Geom. Des..

[45]  John A. Gregory,et al.  A C2 polygonal surface patch , 1989, Comput. Aided Geom. Des..

[46]  Gerald E. Farin,et al.  A construction for visual C1 continuity of polynomial surface patches , 1982, Comput. Graph. Image Process..

[47]  Gregory M. Nielson,et al.  Rectangular v-Splines , 1986, IEEE Computer Graphics and Applications.

[48]  Hans Hagen Bezier-curves with curvature and torsion continuity , 1986 .

[49]  Wolfgang Böhm Curvature continuous curves and surfaces , 1985, Comput. Aided Geom. Des..

[50]  J. R. Manning Continuity Conditions for Spline Curves , 1974, Comput. J..

[51]  Wolfgang Böhm,et al.  A survey of curve and surface methods in CAGD , 1984, Comput. Aided Geom. Des..

[52]  P. Brunet,et al.  A construction for VC 1 continuity of rational Be´zier patches , 1989 .

[53]  J. A. Gregory Smooth interpolation without twist constraints , 1974 .

[54]  Daniel Thalmann,et al.  Computer-Generated Images , 1985, Springer Japan.

[55]  G. Geise,et al.  Über berührende Kegelschnitte einer ebenen Kurve , 1962 .

[56]  A. A. Ball,et al.  Conditions for tangent plane continuity over recursively generated B-spline surfaces , 1988, TOGS.

[57]  J. Oden,et al.  The Mathematics of Surfaces II , 1988 .

[58]  Robert E. Barnhill,et al.  Representation and Approximation of Surfaces , 1977 .

[59]  Hans Hagen,et al.  Geometric surface patches without twist constraints , 1986, Comput. Aided Geom. Des..

[60]  Joe D. Warren,et al.  Geometric continuity , 1991, Comput. Aided Geom. Des..

[61]  A. A. Ball,et al.  Design of an n-sided surface patch from Hermite boundary data , 1989, Comput. Aided Geom. Des..

[62]  Fumihiko Kimura,et al.  Non-four-sided patch expressions with control points , 1984, Comput. Aided Geom. Des..

[63]  John A. Gregory,et al.  High Order Continuous Polugonal Patches , 1992, Geometric Modelling.

[64]  J. Hahn,et al.  Filling polygonal holes with rectangular patches , 1989 .

[65]  T. Goodman Properties of ?-splines , 1985 .

[66]  G. Nielson SOME PIECEWISE POLYNOMIAL ALTERNATIVES TO SPLINES UNDER TENSION , 1974 .

[67]  A. A. Ball,et al.  An investigation of curvature variations over recursively generated B-spline surfaces , 1990, TOGS.

[68]  B. Barsky The beta-spline: a local representation based on shape parameters and fundamental geometric measures , 1981 .