Control of interpenetration of copper-based MOFs on supported surfaces by electrochemical synthesis

A study of a copper-based metal–organic framework (MOF) synthesized by an electrochemical route is presented. Morphological and adsorption properties of the MOF synthesized as bulk powder and on supported copper surfaces were investigated. Differences in these properties and structural refinement studies indicate that when 4,4′,4′′-s-triazine-2,4,6-triyl-tribenzoic acid (H3TATB) is used as linker interpenetration can be prevented when the structure is grown on a surface.

[1]  Jan Fransaer,et al.  Electrochemical Film Deposition of the Zirconium Metal–Organic Framework UiO-66 and Application in a Miniaturized Sorbent Trap , 2015 .

[2]  Freek Kapteijn,et al.  Metal-organic framework nanosheets in polymer composite materials for gas separation , 2014, Nature materials.

[3]  M. Allendorf,et al.  Crystal engineering, structure–function relationships, and the future of metal–organic frameworks , 2015 .

[4]  Jan Fransaer,et al.  On the Electrochemical Deposition of Metal-Organic Frameworks , 2014 .

[5]  C. Doherty,et al.  MOF positioning technology and device fabrication. , 2014, Chemical Society reviews.

[6]  A. P. Shevchenko,et al.  Applied Topological Analysis of Crystal Structures with the Program Package ToposPro , 2014 .

[7]  F. Kapteijn,et al.  Metal Organic Framework Catalysis: Quo vadis? , 2014 .

[8]  Freek Kapteijn,et al.  Fascinating chemistry or frustrating unpredictability: observations in crystal engineering of metal–organic frameworks , 2013 .

[9]  Hong-Cai Zhou,et al.  Interpenetration control in metal–organic frameworks for functional applications , 2013 .

[10]  M. O'keeffe,et al.  Reversible interpenetration in a metal-organic framework triggered by ligand removal and addition. , 2012, Angewandte Chemie.

[11]  F. Kapteijn,et al.  Electrochemical Synthesis of Some Archetypical Zn2+, Cu2+, and Al3+ Metal Organic Frameworks , 2012 .

[12]  R. Fischer,et al.  Metal-organic framework thin films: from fundamentals to applications. , 2012, Chemical reviews.

[13]  Omar K Farha,et al.  Metal-organic framework materials as chemical sensors. , 2012, Chemical reviews.

[14]  Michael O'Keeffe,et al.  Isoreticular expansion of metal-organic frameworks with triangular and square building units and the lowest calculated density for porous crystals. , 2011, Inorganic chemistry.

[15]  Jun Kim,et al.  Control of catenation in CuTATB-n metal–organic frameworks by sonochemical synthesis and its effect on CO2 adsorption , 2011 .

[16]  Kenichi Kato,et al.  Control of interpenetration for tuning structural flexibility influences sorption properties. , 2010, Angewandte Chemie.

[17]  Gérard Férey,et al.  Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. , 2010, Nature materials.

[18]  M. Eddaoudi,et al.  Temperature and concentration control over interpenetration in a metal-organic material. , 2009, Journal of the American Chemical Society.

[19]  O. Shekhah,et al.  Controlling interpenetration in metal-organic frameworks by liquid-phase epitaxy. , 2009, Nature materials.

[20]  Jan Fransaer,et al.  Patterned Growth of Metal-Organic Framework Coatings by Electrochemical Synthesis , 2009 .

[21]  Krista S. Walton,et al.  A novel metal-organic coordination polymer for selective adsorption of CO2 over CH4. , 2009, Chemical communications.

[22]  Mircea Dincă,et al.  Hydrogen storage in metal-organic frameworks. , 2009, Chemical Society reviews.

[23]  Omar M. Yaghi,et al.  Metal|[ndash]|organic Frameworks: A tale of two entanglements , 2007 .

[24]  Sean Parkin,et al.  Framework-catenation isomerism in metal-organic frameworks and its impact on hydrogen uptake. , 2007, Journal of the American Chemical Society.

[25]  Daofeng Sun,et al.  An interweaving MOF with high hydrogen uptake. , 2006, Journal of the American Chemical Society.

[26]  U. Mueller,et al.  Metal–organic frameworks—prospective industrial applications , 2006 .

[27]  V. Blatov,et al.  Interpenetrating metal-organic and inorganic 3D networks: a computer-aided systematic investigation. Part II [1]. Analysis of the Inorganic Crystal Structure Database (ICSD) , 2005 .

[28]  K. Kern,et al.  Deprotonation-Driven Phase Transformations in Terephthalic Acid Self-Assembly on Cu(100) , 2004 .

[29]  Stuart L James,et al.  Metal-organic frameworks. , 2003, Chemical Society reviews.

[30]  K. Kern,et al.  Supramolecular architectures and nanostructures at metal surfaces , 2003 .

[31]  Bin Chen,et al.  Interwoven Metal-Organic Framework on a Periodic Minimal Surface with Extra-Large Pores , 2001, Science.

[32]  Ian D. Williams,et al.  A chemically functionalizable nanoporous material (Cu3(TMA)2(H2O)3)n , 1999 .