MUSIC, maximum likelihood, and Cramer-Rao bound

The performance of the MUSIC and ML methods is studied, and their statistical efficiency is analyzed. The Cramer-Rao bound (CRB) for the estimation problems is derived, and some useful properties of the CRB covariance matrix are established. The relationship between the MUSIC and ML estimators is investigated as well. A numerical study is reported of the statistical efficiency of the MUSIC estimator for the problem of finding the directions of two plane waves using a uniform linear array. An exact description of the results is included.<<ETX>>

[1]  R. Kumaresan,et al.  Estimating the Angles of Arrival of Multiple Plane Waves , 1983, IEEE Transactions on Aerospace and Electronic Systems.

[2]  Robert Schreiber,et al.  Implementation of adaptive array algorithms , 1986, IEEE Trans. Acoust. Speech Signal Process..

[3]  Mostafa Kaveh,et al.  The statistical performance of the MUSIC and the minimum-norm algorithms in resolving plane waves in noise , 1986, IEEE Trans. Acoust. Speech Signal Process..

[4]  Petre Stoica,et al.  Maximum likelihood estimation of the parameters of multiple sinusoids from noisy measurements , 1989, IEEE Trans. Acoust. Speech Signal Process..

[5]  Hong Wang,et al.  On the performance of signal-subspace processing- Part I: Narrow-band systems , 1986, IEEE Trans. Acoust. Speech Signal Process..

[6]  G. Bienvenu,et al.  Optimality of high resolution array processing using the eigensystem approach , 1983 .

[7]  Alfred M. Bruckstein,et al.  The resolution of overlapping echos , 1985, IEEE Trans. Acoust. Speech Signal Process..

[8]  Arnab K. Shaw,et al.  High resolution bearing estimation without eigen decomposition , 1985, ICASSP '85. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[9]  Petre Stoica,et al.  MUSIC, maximum likelihood and Cramer-Rao bound: further results and comparisons , 1989, International Conference on Acoustics, Speech, and Signal Processing,.

[10]  Yoh-Han Pao,et al.  Single vector approaches to eigenstructure analysis for harmonic retrieval , 1986, ICASSP '86. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[11]  T. Söderström,et al.  On reparametrization of loss functions used in estimation and the invariance principle , 1989 .

[12]  Thomas Kailath,et al.  Asymptotic performance of eigenstructure spectral analysis methods , 1984, ICASSP.

[13]  Franz B. Tuteur,et al.  The covariance difference method in signal detection , 1987 .

[14]  Ken Sharman,et al.  Maximum likelihood parameter estimation by simulated annealing , 1988, ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing.

[15]  Mostafa Kaveh,et al.  On the statistical sufficiency of the coherently averaged covariance matrix for the estimation of the parameters of wideband sources , 1987, ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[16]  Robert Boorstyn,et al.  Single tone parameter estimation from discrete-time observations , 1974, IEEE Trans. Inf. Theory.

[17]  Ehud Weinstein,et al.  Parameter estimation of superimposed signals using the EM algorithm , 1988, IEEE Trans. Acoust. Speech Signal Process..

[18]  D. R. Farrier,et al.  Asymptotic results for eigenvector methods , 1985 .

[19]  Georges Bienvenu,et al.  Adaptivity to background noise spatial coherence for high resolution passive methods , 1980, ICASSP.

[20]  Ilan Ziskind,et al.  Maximum likelihood localization of multiple sources by alternating projection , 1988, IEEE Trans. Acoust. Speech Signal Process..

[21]  Thomas Kailath,et al.  Detection of signals by information theoretic criteria , 1985, IEEE Trans. Acoust. Speech Signal Process..

[22]  Donald W. Tufts,et al.  Simple, effective computation of principal eigenvectors and their eigenvalues and application to high-resolution estimation of frequencies , 1986, IEEE Trans. Acoust. Speech Signal Process..

[23]  T. Durrani,et al.  A comparative study of modern eigenstructure methods for bearing estimation-A new high performance approach , 1986, 1986 25th IEEE Conference on Decision and Control.

[24]  Thomas Kailath,et al.  ESPRIT-A subspace rotation approach to estimation of parameters of cisoids in noise , 1986, IEEE Trans. Acoust. Speech Signal Process..

[25]  T. W. Anderson ASYMPTOTIC THEORY FOR PRINCIPAL COMPONENT ANALYSIS , 1963 .

[26]  R. R. Boorstyn,et al.  Multiple tone parameter estimation from discrete-time observations , 1976, The Bell System Technical Journal.

[27]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[28]  J. Schmee An Introduction to Multivariate Statistical Analysis , 1986 .

[29]  I. Ziskind,et al.  Maximum likelihood estimation via the alternating projection maximization algorithm , 1987, ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[30]  Thomas Kailath,et al.  On spatial smoothing for direction-of-arrival estimation of coherent signals , 1985, IEEE Trans. Acoust. Speech Signal Process..

[31]  Arye Nehorai,et al.  Maximum likelihood estimation of exponential signals in noise using a Newton algorithm , 1988, Fourth Annual ASSP Workshop on Spectrum Estimation and Modeling.

[32]  Yoram Bresler,et al.  Exact maximum likelihood parameter estimation of superimposed exponential signals in noise , 1986, IEEE Trans. Acoust. Speech Signal Process..

[33]  Ramdas Kumaresan,et al.  An algorithm for pole-zero modeling and spectral analysis , 1986, IEEE Trans. Acoust. Speech Signal Process..

[34]  Ken Sharman,et al.  Adaptive algorithms for estimating the complete covariance eigenstructure , 1986, ICASSP '86. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[35]  R. Kumaresan,et al.  Estimation of frequencies of multiple sinusoids: Making linear prediction perform like maximum likelihood , 1982, Proceedings of the IEEE.

[36]  S. Parthasarathy,et al.  Maximum-likelihood estimation of parameters of exponentially damped sinusoids , 1985, Proceedings of the IEEE.

[37]  P. Stoica,et al.  On the expectation of the product of four matrix-valued Gaussian random variables , 1988 .