Rational approaches to targeted polypharmacology: creating and navigating protein-ligand interaction networks.

[1]  Gavin Harper,et al.  Assessment of chemical coverage of kinome space and its implications for kinase drug discovery. , 2008, Journal of medicinal chemistry.

[2]  Avi Ma'ayan,et al.  SNAVI: Desktop application for analysis and visualization of large-scale signaling networks , 2009, BMC Systems Biology.

[3]  R. Solé,et al.  The topology of drug-target interaction networks: implicit dependence on drug properties and target families. , 2009, Molecular bioSystems.

[4]  F. Sams-Dodd,et al.  Optimizing the discovery organization for innovation. , 2005, Drug discovery today.

[5]  J. Devereux,et al.  A comprehensive set of sequence analysis programs for the VAX , 1984, Nucleic Acids Res..

[6]  B. Roth,et al.  Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia , 2004, Nature Reviews Drug Discovery.

[7]  William P. Janzen,et al.  A Chemogenomic Analysis of the Human Proteome: Application to Enzyme Families , 2007, Journal of biomolecular screening.

[8]  F. Sams-Dodd Target-based drug discovery: is something wrong? , 2005, Drug discovery today.

[9]  R. Solé,et al.  Data completeness—the Achilles heel of drug-target networks , 2008, Nature Biotechnology.

[10]  A. Fliri,et al.  Drug effects viewed from a signal transduction network perspective. , 2009, Journal of medicinal chemistry.

[11]  M. Vieth,et al.  Kinomics: characterizing the therapeutically validated kinase space. , 2005, Drug discovery today.

[12]  G. V. Paolini,et al.  Global mapping of pharmacological space , 2006, Nature Biotechnology.

[13]  Gary D Bader,et al.  How to visually interpret biological data using networks , 2009, Nature Biotechnology.

[14]  Tudor I. Oprea,et al.  Quantifying the Relationships among Drug Classes , 2008, J. Chem. Inf. Model..

[15]  Ulrich A K Betz,et al.  How many genomics targets can a portfolio afford? , 2005, Drug discovery today.

[16]  M. Newman The physics of networks , 2008 .

[17]  Fidel Ramírez,et al.  Computing topological parameters of biological networks , 2008, Bioinform..

[18]  M. Vieth,et al.  Kinomics-structural biology and chemogenomics of kinase inhibitors and targets. , 2004, Biochimica et biophysica acta.

[19]  J. Mestres,et al.  Drug‐Target Networks , 2010, Molecular informatics.

[20]  Anne Mai Wassermann,et al.  SARANEA: A Freely Available Program To Mine Structure-Activity and Structure-Selectivity Relationship Information in Compound Data Sets , 2010, J. Chem. Inf. Model..

[21]  Pierre Acklin,et al.  Similarity Metrics for Ligands Reflecting the Similarity of the Target Proteins , 2003, J. Chem. Inf. Comput. Sci..

[22]  K. Ziegelbauer,et al.  Genomics: success or failure to deliver drug targets? , 2005, Current opinion in chemical biology.

[23]  K. Houck,et al.  The Hypolipidemic Natural Product Guggulsterone Is a Promiscuous Steroid Receptor Ligand , 2005, Molecular Pharmacology.

[24]  R. Morphy Selectively nonselective kinase inhibition: striking the right balance. , 2010, Journal of medicinal chemistry.

[25]  J. Pearl Causal inference in statistics: An overview , 2009 .

[26]  Michael J. Keiser,et al.  Relating protein pharmacology by ligand chemistry , 2007, Nature Biotechnology.

[27]  S. Frantz Drug discovery: Playing dirty , 2005, Nature.

[28]  Michael J. Keiser,et al.  Predicting new molecular targets for known drugs , 2009, Nature.

[29]  Tudor I. Oprea,et al.  Systems Chemical Biology , 2019, Methods in Molecular Biology.

[30]  Marie-Christine Brun,et al.  TreeDyn: towards dynamic graphics and annotations for analyses of trees , 2006, BMC Bioinformatics.

[31]  G. S. Johnson,et al.  An Information-Intensive Approach to the Molecular Pharmacology of Cancer , 1997, Science.