Manipulating individual atoms in microscopic optical dipole traps

We have realized very small optical dipole traps to store and manipulate individual atoms. Due to the small trap volume, a "collisional blockade" mechanism limits the number of trapped atoms to 1 over a large range of loading rates. We have studied this collisional blockade effect, and measured the oscillation frequencies and temperature of a single trapped atom, that appears to be in the sub-Doppler regime. Various mechanisms for turner cooling will be described, as well as the perspectives for using this system for quantum information processing.