Support Vector Regression for Optimal Robotic Force Control Assembly

[1]  Tongdan Jin,et al.  Industrial robotic assembly process modeling using support vector regression , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[2]  Heping Chen,et al.  Robot learning for complex manufacturing process , 2015, 2015 IEEE International Conference on Industrial Technology (ICIT).

[3]  Jinhua She,et al.  Three-Layer Weighted Fuzzy Support Vector Regression for Emotional Intention Understanding in Human–Robot Interaction , 2018, IEEE Transactions on Fuzzy Systems.

[4]  Xianfu Chen,et al.  Exploration vs exploitation for distributed channel access in cognitive radio networks: A multi-user case study , 2011, 2011 11th International Symposium on Communications & Information Technologies (ISCIT).

[5]  Torgny Brogårdh,et al.  Present and future robot control development - An industrial perspective , 2007, Annu. Rev. Control..

[6]  Wonseok Lee,et al.  Micro parts assembly system with micro gripper and RCC unit , 2005, IEEE Transactions on Robotics.

[7]  Qingsong Xu Precision Position/Force Interaction Control of a Piezoelectric Multimorph Microgripper for Microassembly , 2013, IEEE Transactions on Automation Science and Engineering.

[8]  Hendrik Purwins,et al.  Regression Methods for Virtual Metrology of Layer Thickness in Chemical Vapor Deposition , 2014, IEEE/ASME Transactions on Mechatronics.

[9]  Holger Voos,et al.  Position Identification in Force-Guided Robotic Peg-in-Hole Assembly Tasks , 2014 .

[10]  Yoichi Hori,et al.  Advanced Motion Control of Electric Vehicles Based on Robust Lateral Tire Force Control via Active Front Steering , 2014, IEEE/ASME Transactions on Mechatronics.

[11]  J. March Exploration and exploitation in organizational learning , 1991, STUDI ORGANIZZATIVI.

[12]  Timon C. Du,et al.  Implementing support vector regression with differential evolution to forecast motherboard shipments , 2014, Expert Syst. Appl..

[13]  Luc Berthouze,et al.  Passive compliance for a RC servo-controlled bouncing robot , 2006, Adv. Robotics.

[14]  Sancho Salcedo-Sanz,et al.  Short term wind speed prediction based on evolutionary support vector regression algorithms , 2011, Expert Syst. Appl..

[15]  Yoshua Bengio,et al.  Random Search for Hyper-Parameter Optimization , 2012, J. Mach. Learn. Res..

[16]  Thomas A. Fuhlbrigge,et al.  Balancing different performance indices in complex robotic assembly processes , 2017, 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[17]  Jianjun Wang,et al.  High-precision assembly automation based on robot compliance , 2009 .

[19]  H. Vincent Poor,et al.  Cognitive Medium Access: Exploration, Exploitation, and Competition , 2007, IEEE Transactions on Mobile Computing.

[20]  David D. Cox,et al.  Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures , 2013, ICML.

[21]  George Zhang,et al.  Robotic force control assembly parameter optimization for adaptive production , 2011, 2011 IEEE International Conference on Robotics and Automation.

[22]  Jeremy A. Marvel,et al.  Accelerating robotic assembly parameter optimization through the generation of internal models , 2009, 2009 IEEE International Conference on Technologies for Practical Robot Applications.

[23]  Aria Alasty,et al.  Calibration of parallel kinematic machine tools using mobility constraint on the tool center point , 2009 .

[24]  Junji Takahashi,et al.  Passive Alignment Principle for Robotic Assembly Between a Ring and a Shaft With Extremely Narrow Clearance , 2016, IEEE/ASME Transactions on Mechatronics.

[25]  Jong-Phil Kim,et al.  Adaptive Energy-Bounding Approach for Robustly Stable Interaction Control of Impedance-Controlled Industrial Robot With Uncertain Environments , 2014, IEEE/ASME Transactions on Mechatronics.

[26]  Jeremy A. Marvel,et al.  Model-Assisted Stochastic Learning for Robotic Applications , 2011, IEEE Transactions on Automation Science and Engineering.

[27]  George Zhang,et al.  Objective metric study for DOE-based parameter optimization in robotic torque converter assembly , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[28]  Samuel B. Kesner,et al.  Design Principles for Rapid Prototyping Forces Sensors Using 3-D Printing , 2011, IEEE/ASME Transactions on Mechatronics.

[29]  Daniel E. Whitney,et al.  Quasi-Static Assembly of Compliantly Supported Rigid Parts , 1982 .

[30]  Pedro Paulo Balestrassi,et al.  Design of experiments and focused grid search for neural network parameter optimization , 2016, Neurocomputing.

[31]  Alexander J. Smola,et al.  Support Vector Method for Function Approximation, Regression Estimation and Signal Processing , 1996, NIPS.

[32]  Yunqian Ma,et al.  Practical selection of SVM parameters and noise estimation for SVM regression , 2004, Neural Networks.

[33]  I-Fan Chang,et al.  Support vector regression for real-time flood stage forecasting , 2006 .

[34]  Jeremy A. Marvel,et al.  Automated learning for parameter optimization of robotic assembly tasks utilizing genetic algorithms , 2009, 2008 IEEE International Conference on Robotics and Biomimetics.

[35]  Tongdan Jin,et al.  Modeling complex robotic assembly process using Gaussian Process Regression , 2014, 2014 9th IEEE Conference on Industrial Electronics and Applications.

[36]  Ulrike Thomas,et al.  Multi Sensor Fusion in Robot Assembly Using Particle Filters , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[37]  Zhirong Sun,et al.  Support vector machine approach for protein subcellular localization prediction , 2001, Bioinform..

[38]  Kevin Leyton-Brown,et al.  Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms , 2012, KDD.

[39]  Sangcheol Lee,et al.  Development of a new variable remote center compliance (VRCC) with modified elastomer shear pad (ESP) for robot assembly , 2005, IEEE Transactions on Automation Science and Engineering.