μ Opiate Receptor Gene Dose Effects on Different Morphine Actions: Evidence for Differential in vivo μ Receptor Reserve

[1]  R. Wise,et al.  The neurobiology of addiction , 2019, Annals of the New York Academy of Sciences.

[2]  I. Sora,et al.  δ-Opioid receptor agonists produce antinociception and [35S]GTPγS binding in μ receptor knockout mice , 2000 .

[3]  I. Sora,et al.  Enhanced δ-opioid receptor-mediated antinociception in μ-opioid receptor-deficient mice , 2000 .

[4]  I. Sora,et al.  The μ-opioid receptor gene-dose dependent reductions in G-protein activation in the pons/medulla and antinociception induced by endomorphins in μ-opioid receptor knockout mice , 1999, Neuroscience.

[5]  I. Sora,et al.  Characterization of mechanical withdrawal responses and effects of μ-, δ- and κ-opioid agonists in normal and μ-opioid receptor knockout mice , 1999, Brain Research.

[6]  I. Sora,et al.  Visceral chemical nociception in mice lacking mu-opioid receptors: effects of morphine, SNC80 and U-50,488. , 1999, European journal of pharmacology.

[7]  I. Sora,et al.  Absence of G‐protein activation by μ‐opioid receptor agonists in the spinal cord of μ‐opioid receptor knockout mice , 1999, British journal of pharmacology.

[8]  I. Sora,et al.  No heroin or morphine 6-glucuronide analgesia in -opioid receptor knockout mice , 1998 .

[9]  A. Cavalli,et al.  mu Opioid receptor knockout in mice: effects on ligand-induced analgesia and morphine lethality. , 1998, Brain research. Molecular brain research.

[10]  H. Jansen,et al.  Altered Hematopoiesis, Behavior, and Sexual Function in μ Opioid Receptor–deficient Mice , 1997, The Journal of experimental medicine.

[11]  I. Sora,et al.  The mu-opioid receptor is necessary for [D-Pen2,D-Pen5]enkephalin-induced analgesia. , 1997, European journal of pharmacology.

[12]  I. Sora,et al.  Opiate receptor knockout mice define mu receptor roles in endogenous nociceptive responses and morphine-induced analgesia. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Brigitte L. Kieffer,et al.  Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the µ-opioid-receptor gene , 1996, Nature.

[14]  S. Law,et al.  Molecular Mechanisms of Opiate Receptor Coupling to G Proteins and Effector Systems a , 1996, Annals of the New York Academy of Sciences.

[15]  G. Uhl,et al.  Retained cocaine conditioned place preference in D1 receptor deficient mice. , 1995, Neuroreport.

[16]  J. Woods,et al.  Receptor reserve and affinity of mu opioid agonists in mouse antinociception: correlation with receptor binding. , 1995, Life sciences.

[17]  C. Epstein,et al.  Transgenic superoxide dismutase mice differ in opioid-induced analgesia. , 1995, European journal of pharmacology.

[18]  M. Behbehani Functional characteristics of the midbrain periaqueductal gray , 1995, Progress in Neurobiology.

[19]  J. García-Sevilla,et al.  Increased density of μ-opioid receptors in the postmortem brain of suicide victims , 1995, Brain Research.

[20]  C. Chavkin,et al.  Agonist-induced Desensitization of the Mu Opioid Receptor-coupled Potassium Channel (GIRK1) (*) , 1995, The Journal of Biological Chemistry.

[21]  G. Pasternak,et al.  An opiate-receptor gene family reunion , 1994, Trends in Neurosciences.

[22]  G. Uhl,et al.  mu opiate receptor: cDNA cloning and expression. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[23]  S. Kaneko,et al.  Cloning and expression of a cDNA for the rat k‐opioid receptor , 1993 .

[24]  G. Pasternak Pharmacological mechanisms of opioid analgesics. , 1993, Clinical neuropharmacology.

[25]  M. Misawa,et al.  Morphine-induced place preference in the CXBK mouse: characteristics of μ opioid receptor subtypes , 1993, Brain Research.

[26]  K. Befort,et al.  The delta-opioid receptor: isolation of a cDNA by expression cloning and pharmacological characterization. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[27]  C. Paronis,et al.  Development of tolerance to the analgesic activity of mu agonists after continuous infusion of morphine, meperidine or fentanyl in rats. , 1992, The Journal of pharmacology and experimental therapeutics.

[28]  C. Paronis,et al.  Assessment of relative intrinsic activity of mu-opioid analgesics in vivo by using beta-funaltrexamine. , 1990, The Journal of pharmacology and experimental therapeutics.

[29]  Jonathan M. Links,et al.  Comparison of [11C]Diprenorphine and [11C]Carfentanil Binding to Opiate Receptors in Humans by Positron Emission Tomography , 1990, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[30]  W. Fleming,et al.  Mechanisms of cellular adaptive sensitivity changes: applications to opioid tolerance and dependence. , 1989, Pharmacological reviews.

[31]  Mickley Ga,et al.  Brain areas involved in production of morphine-induced locomotor hyperactivity of the C57B1/6J mouse. , 1986 .

[32]  C. Chavkin,et al.  Opioid receptor reserve in normal and morphine-tolerant guinea pig ileum myenteric plexus. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[33]  T. Kenakin The classification of drugs and drug receptors in isolated tissues. , 1984, Pharmacological reviews.

[34]  R. Ruffolo IMPORTANT CONCEPTS OF RECEPTOR THEORY , 1982 .

[35]  G. Pasternak Opiate, enkephalin, and endorphin analgesia , 1981, Neurology.

[36]  R. Meisch,et al.  A precision drinking device for rats tested with water, etonitazene, and ethanol , 1981, Pharmacology Biochemistry and Behavior.

[37]  G. Aghajanian,et al.  Tolerance of locus coeruleus neurones to morphine and suppression of withdrawal response by clonidine , 1978, Nature.

[38]  H. Loh,et al.  Comparison of the effects of morphine on locomotor activity, analgesia and primary and protracted physical dependence in six mouse strains. , 1977, The Journal of pharmacology and experimental therapeutics.

[39]  L. Harris,et al.  The effect of narcotics and narcotic antagonists on the tail‐flick response in spinal mice , 1969, The Journal of pharmacy and pharmacology.

[40]  R. Furchgott THE PHARMACOLOGICAL DIFFERENTIATION OF ADRENERGIC RECEPTORS * , 1967, Annals of the New York Academy of Sciences.

[41]  I. Sora,et al.  delta-Opioid receptor agonists produce antinociception and [35S]GTPgammaS binding in mu receptor knockout mice. , 2000, European journal of pharmacology.

[42]  I. Sora,et al.  Enhanced delta-opioid receptor-mediated antinociception in mu-opioid receptor-deficient mice. , 2000, European journal of pharmacology.

[43]  I. Sora,et al.  Characterization of mechanical withdrawal responses and effects of mu-, delta- and kappa-opioid agonists in normal and mu-opioid receptor knockout mice. , 1999, Brain research.

[44]  V. Pickel,et al.  mu Opiate receptor immunoreactivity in rat central nervous system. , 1996, Neurochemical research.

[45]  H. Ueda,et al.  Role of beta-adrenoceptors in the expression of morphine withdrawal signs. , 1994, Life sciences.

[46]  H. Ueda,et al.  Role of β-adrenoceptors in the expression of morphine withdrawal signs , 1994 .

[47]  S. Kaneko,et al.  Cloning and expression of a cDNA for the rat kappa-opioid receptor. , 1993, FEBS letters.

[48]  T. Burks,et al.  Supraspinal Opioid Receptors in Antinociception , 1993 .

[49]  R. North Opioid Actions on Membrane Ion Channels , 1993 .

[50]  G. Di Chiara,et al.  Neurobiology of opiate abuse. , 1992, Trends in pharmacological sciences.

[51]  S. Childers,et al.  Opioid receptor-coupled second messenger systems. , 1991, Life sciences.

[52]  R. Ruffolo Review important concepts of receptor theory. , 1982, Journal of autonomic pharmacology.