暂无分享,去创建一个
[1] Eric Blayo,et al. Towards Optimized Schwarz Methods for the Navier–Stokes Equations , 2016, J. Sci. Comput..
[2] Jack Dongarra,et al. Performance of asynchronous optimized Schwarz with one-sided communication , 2019, Parallel Comput..
[3] Gérard M. Baudet,et al. Asynchronous Iterative Methods for Multiprocessors , 1978, JACM.
[4] Maksymilian Dryja,et al. An Additive Variant of the Schwarz Alternating Method for the Case of Many Subregions , 2018 .
[5] Frédéric Magoulès,et al. Convergence of Asynchronous Optimized Schwarz Methods in the Plane , 2017 .
[6] Martin J. Gander,et al. Optimized Schwarz Methods for Maxwell's Equations , 2006, SIAM J. Sci. Comput..
[7] Daniel B. Szyld,et al. Asynchronous Iterations , 2011, Encyclopedia of Parallel Computing.
[8] Ruipeng Li. On Parallel Solution of Sparse Triangular Linear Systems in CUDA , 2017, ArXiv.
[9] Daniel B. Szyld,et al. An Algebraic Convergence Theory for Restricted Additive Schwarz Methods Using Weighted Max Norms , 2001, SIAM J. Numer. Anal..
[10] Michele Benzi,et al. Algebraic theory of multiplicative Schwarz methods , 2001, Numerische Mathematik.
[11] A. J. M. van Gasteren,et al. Derivation of a Termination Detection Algorithm for Distributed Computations , 1983, Inf. Process. Lett..
[12] Nissim Francez,et al. Distributed Termination , 1980, TOPL.
[13] Alex Rapaport,et al. Mpi-2: extensions to the message-passing interface , 1997 .
[14] Frédéric Magoulès,et al. Asynchronous iterative sub-structuring methods , 2018, Math. Comput. Simul..
[15] James A. Kahle,et al. 2.1 Summit and Sierra: Designing AI/HPC Supercomputers , 2019, 2019 IEEE International Solid- State Circuits Conference - (ISSCC).
[16] Denis Foley,et al. Ultra-Performance Pascal GPU and NVLink Interconnect , 2017, IEEE Micro.
[17] Frédéric Magoulès,et al. Asynchronous optimized Schwarz methods with and without overlap , 2017, Numerische Mathematik.
[18] Yinnian He,et al. Restricted Additive Schwarz Preconditioner for Elliptic Equations with Jump Coefficients , 2016 .
[19] Pierre-Henri Tournier,et al. Two-Level Preconditioners for the Helmholtz Equation , 2017 .
[20] Friedemann Mattern,et al. Algorithms for distributed termination detection , 1987, Distributed Computing.
[21] Xiao-Chuan Cai,et al. A Restricted Additive Schwarz Preconditioner for General Sparse Linear Systems , 1999, SIAM J. Sci. Comput..
[22] David Wells,et al. The deal.II library, Version 9.0 , 2018, J. Num. Math..
[23] Daniel B. Szyld,et al. Weighted max norms, splittings, and overlapping additive Schwarz iterations , 1999, Numerische Mathematik.
[24] YANQING CHEN,et al. Algorithm 8 xx : CHOLMOD , supernodal sparse Cholesky factorization and update / downdate ∗ , 2006 .
[25] Daniel B. Szyld,et al. Convergence of the multiplicative Schwarz method for singularly perturbed convection-diffusion problems discretized on a Shishkin mesh , 2018 .
[26] Jacques M. Bahi,et al. A decentralized convergence detection algorithm for asynchronous parallel iterative algorithms , 2005, IEEE Transactions on Parallel and Distributed Systems.
[27] Frédéric Magoulès,et al. Optimized Schwarz Method for Poisson’s Equation in Rectangular Domains , 2017 .
[28] D. Szyld. Different Models Of Parallel Asynchronous Iterations With Overlapping Blocks , 1998 .
[29] Pedro C. Diniz. Exascale Programming Challenges , 2011 .