Acid-Base Pairs in Lewis Acidic Zeolites Promote Direct Aldol Reactions by Soft Enolization.

Hf-, Sn-, and Zr-Beta zeolites catalyze the cross-aldol condensation of aromatic aldehydes with acetone under mild reaction conditions with near quantitative yields. NMR studies with isotopically labeled molecules confirm that acid-base pairs in the Si-O-M framework ensemble promote soft enolization through α-proton abstraction. The Lewis acidic zeolites maintain activity in the presence of water and, unlike traditional base catalysts, in acidic solutions.

[1]  Christopher W. Jones,et al.  Spatial arrangement and acid strength effects on acid–base cooperatively catalyzed aldol condensation on aminosilica materials , 2015 .

[2]  E. Hensen,et al.  Synthesis of Sn‐Beta with Exclusive and High Framework Sn Content , 2015 .

[3]  Yuriy Román‐Leshkov,et al.  Solid Lewis Acids Catalyze the Carbon–Carbon Coupling between Carbohydrates and Formaldehyde , 2015 .

[4]  Y. Pontikes,et al.  Cooperative Catalysis for Multistep Biomass Conversion with Sn/Al Beta Zeolite , 2015 .

[5]  Helen Y. Luo,et al.  Investigation of the reaction kinetics of isolated Lewis acid sites in Beta zeolites for the Meerwein–Ponndorf–Verley reduction of methyl levulinate to γ-valerolactone , 2014 .

[6]  Tao Zhang,et al.  Synthesis of Diesel and Jet Fuel Range Alkanes with Furfural and Ketones from Lignocellulose under Solvent Free Conditions , 2014 .

[7]  Yuriy Román‐Leshkov,et al.  Cascade Reactions for the Continuous and Selective Production of Isobutene from Bioderived Acetic Acid Over Zinc-Zirconia Catalysts , 2014 .

[8]  R. Griffin,et al.  A continuous flow strategy for the coupled transfer hydrogenation and etherification of 5-(hydroxymethyl)furfural using Lewis acid zeolites. , 2014, ChemSusChem.

[9]  Landong Li,et al.  Improved Postsynthesis Strategy to Sn-Beta Zeolites as Lewis Acid Catalysts for the Ring-Opening Hydration of Epoxides , 2014 .

[10]  A. Comas‐Vives,et al.  Proton transfers are key elementary steps in ethylene polymerization on isolated chromium(III) silicates , 2014, Proceedings of the National Academy of Sciences.

[11]  Mark E. Davis,et al.  Active Sites in Sn-Beta for Glucose Isomerization to Fructose and Epimerization to Mannose , 2014 .

[12]  M. Head‐Gordon,et al.  Analysis of the Reaction Mechanism and Catalytic Activity of Metal-Substituted Beta Zeolite for the Isomerization of Glucose to Fructose , 2014 .

[13]  R. Griffin,et al.  Dynamic Nuclear Polarization NMR Enables the Analysis of Sn-Beta Zeolite Prepared with Natural Abundance 119Sn Precursors , 2014, Journal of the American Chemical Society.

[14]  David Kubička,et al.  Aldol condensation of furfural and acetone over MgAl layered double hydroxides and mixed oxides , 2014 .

[15]  S. Norsic,et al.  Polymerization of ethylene by silica-supported dinuclear Cr(III) sites through an initiation step involving C-H bond activation. , 2014, Angewandte Chemie.

[16]  Y. Pontikes,et al.  Productive sugar isomerization with highly active Sn in dealuminated β zeolites , 2013 .

[17]  Yuriy Román-Leshkov,et al.  Domino reaction catalyzed by zeolites with Brønsted and Lewis acid sites for the production of γ-valerolactone from furfural. , 2013, Angewandte Chemie.

[18]  Bert F. Sels,et al.  Toward Functional Polyester Building Blocks from Renewable Glycolaldehyde with Sn Cascade Catalysis , 2013 .

[19]  Ive Hermans,et al.  Einfache und skalierbare Synthese von hochaktivem Lewis-saurem Sn-β , 2012 .

[20]  Ceri Hammond,et al.  Simple and scalable preparation of highly active Lewis acidic Sn-β. , 2012, Angewandte Chemie.

[21]  Mark E. Davis,et al.  Framework and Extraframework Tin Sites in Zeolite Beta React Glucose Differently , 2012 .

[22]  Salvador Ordóñez,et al.  Aqueous-phase furfural-acetone aldol condensation over basic mixed oxides , 2012 .

[23]  Y. Pagán-Torres,et al.  Sn-Beta catalysed conversion of hemicellulosic sugars , 2012 .

[24]  Mark E. Davis,et al.  Activation of Carbonyl-Containing Molecules with Solid Lewis Acids in Aqueous Media , 2011 .

[25]  Masakatsu Shibasaki,et al.  Direkte katalytische asymmetrische Reaktionen unter Protonentransferkatalyse , 2011 .

[26]  N. Kumagai,et al.  Recent advances in direct catalytic asymmetric transformations under proton-transfer conditions. , 2011, Angewandte Chemie.

[27]  Pei Li,et al.  Postsynthesis and Selective Oxidation Properties of Nanosized Sn-Beta Zeolite , 2011 .

[28]  Karl D. Hammond,et al.  Liquid phase aldol condensation reactions with MgO-ZrO2 and shape-selective nitrogen-substituted NaY , 2011 .

[29]  Manuel Moliner,et al.  Mechanism of glucose isomerization using a solid Lewis acid catalyst in water. , 2010, Angewandte Chemie.

[30]  Sankaran Thayumanavan,et al.  C--C bond formation reactions for biomass-derived molecules. , 2010, ChemSusChem.

[31]  Manuel Moliner,et al.  Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water , 2010, Proceedings of the National Academy of Sciences.

[32]  B. Shanks,et al.  Acid-base cooperativity in condensation reactions with functionalized mesoporous silica catalysts , 2009 .

[33]  Christian Gärtner,et al.  Carbon–carbon bond formation for biomass-derived furfurals and ketones by aldol condensation in a biphasic system , 2008 .

[34]  Mark E. Davis,et al.  Cooperative catalysis by silica-supported organic functional groups. , 2008, Chemical Society reviews.

[35]  A. Corma,et al.  Mechanism of the Meerwein-Ponndorf-Verley-Oppenauer (MPVO) redox equilibrium on Sn- and Zr-beta zeolite catalysts. , 2006, The journal of physical chemistry. B.

[36]  A. Corma,et al.  Determination of the catalytically active oxidation Lewis acid sites in Sn-beta zeolites, and their optimisation by the combination of theoretical and experimental studies , 2005 .

[37]  G. Huber,et al.  Production of Liquid Alkanes by Aqueous-Phase Processing of Biomass-Derived Carbohydrates , 2005, Science.

[38]  J. Hargreaves,et al.  Aldol condensation of aldehydes and ketones over solid base catalysts , 2003 .

[39]  A. Corma,et al.  Sn-zeolite beta as a heterogeneous chemoselective catalyst for Baeyer–Villiger oxidations , 2001, Nature.

[40]  Chi-Huey Wong,et al.  Die katalysierte asymmetrische Aldolreaktion , 2000 .

[41]  Wong,et al.  The Catalytic Asymmetric Aldol Reaction. , 2000, Angewandte Chemie.

[42]  F. Ng,et al.  A kinetic study of the aldol condensation of acetone using an anion exchange resin catalyst , 1997 .

[43]  K. Tanabe New Solid Acids and Bases: Their Catalytic Properties , 1990 .

[44]  W. Pryor,et al.  Carbonyl Reactions. VII. The Effect of Substituents upon the Rate of Condensation of Substituted Benzaldehydes with Acetophenone1 , 1959 .

[45]  David P. Evans,et al.  245. Condensations of carbonyl compounds. A kinetic study of the reaction of acetophenone with benzaldehyde , 1940 .