Analysis of multiscale methods

The heterogeneous multiscale method gives a general framework for the analysis of multiscale methods. In this paper, we demonstrate this by applying this framework to two canonical problems: The elliptic problem with multiscale coefficients and the quasicontinuum method.

[1]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[2]  M. Freidlin Functional Integration And Partial Differential Equations , 1985 .

[3]  E. Weinan,et al.  Analysis of the heterogeneous multiscale method for elliptic homogenization problems , 2004 .

[4]  M. Ortiz,et al.  Quasicontinuum analysis of defects in solids , 1996 .

[5]  J. Tinsley Oden,et al.  Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials: I. Error estimates and adaptive algorithms , 2000 .

[6]  A. Brandt Multigrid methods in lattice field computations , 1992, hep-lat/9204014.

[7]  X. Blanc,et al.  From Molecular Models¶to Continuum Mechanics , 2002 .

[8]  J. Bourgat Numerical experiments of the homogenization method , 1979 .

[9]  R. Eymard,et al.  Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.

[10]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[11]  Xingye Yue,et al.  Numerical methods for multiscale elliptic problems , 2006, J. Comput. Phys..

[12]  E Weinan,et al.  The heterogeneous multi-scale method for homogenization problems , 2005 .

[13]  Ronald E. Miller,et al.  The Quasicontinuum Method: Overview, applications and current directions , 2002 .

[14]  M. Ortiz,et al.  An analysis of the quasicontinuum method , 2001, cond-mat/0103455.

[15]  Adriana Garroni,et al.  Variational Formulation of Softening Phenomena in Fracture Mechanics: The One‐Dimensional Case , 1999 .

[16]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[17]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[18]  M. Born,et al.  Dynamical Theory of Crystal Lattices , 1954 .

[19]  Eric Vanden-Eijnden,et al.  NUMERICAL TECHNIQUES FOR MULTI-SCALE DYNAMICAL SYSTEMS WITH STOCHASTIC EFFECTS ⁄ , 2003 .

[20]  Thomas Y. Hou,et al.  Convergence of a Nonconforming Multiscale Finite Element Method , 2000, SIAM J. Numer. Anal..

[21]  J. Ericksen The Cauchy and Born Hypotheses for Crystals. , 1983 .

[22]  R. D. James,et al.  Proposed experimental tests of a theory of fine microstructure and the two-well problem , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[23]  I. Stakgold The Cauchy relations in a molecular theory of elasticity , 1950 .

[24]  R. D. Richtmyer,et al.  Difference methods for initial-value problems , 1959 .

[25]  E Weinan,et al.  Some Recent Progress in Multiscale Modeling , 2004 .

[26]  J. Lennard-jones,et al.  Critical and Co-Operative Phenomena. III. A Theory of Melting and the Structure of Liquids , 1939 .

[27]  C. Schwab,et al.  Two-scale FEM for homogenization problems , 2002 .

[28]  Ping Lin,et al.  Theoretical and numerical analysis for the quasi-continuum approximation of a material particle model , 2003, Math. Comput..

[29]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[30]  E Weinan,et al.  The Heterognous Multiscale Methods , 2003 .

[31]  V. V. Yurinskii Averaging of symmetric diffusion in random medium , 1986 .