Some Remarks on the Smoluchowski–Kramers Approximation

AbstractAccording to the Smoluchowski–Kramers approximation, solution qtμ of the equation $$\mu \ddot q_t^\mu = b(q_t^\mu ) - \dot q_t^\mu + \sigma (q_t^\mu )\dot W_t ,q_0 = q,\dot q = p$$ , where $$\dot W_t $$ is the White noise, converges to the solution of equation $$\dot q_t = b(q_t ) + \sigma (q_t )\dot W_t ,q_0 = q$$ as µ ↓ 0. Many asymptotic problems for the last equation were studied in recent years. We consider relations between asymptotics for the first order equation and the original second order equation. Homogenization, large deviations and stochastic resonance, approximation of Brownian motion Wt by a smooth stochastic process, stationary distributions are considered.

[1]  M. Smoluchowski,et al.  Drei Vorträge über Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen , 1927 .

[2]  H. Kramers Brownian motion in a field of force and the diffusion model of chemical reactions , 1940 .

[3]  M. Freidlin Dirichlet’s Problem for an Equation with Periodic Coefficients Depending on a Small Parameter , 1964 .

[4]  E. Wong,et al.  On the Convergence of Ordinary Integrals to Stochastic Integrals , 1965 .

[5]  Edward Nelson Dynamical Theories of Brownian Motion , 1967 .

[6]  harald Cramer,et al.  Stationary And Related Stochastic Processes , 1967 .

[7]  Zeev Schuss,et al.  Theory and Applications of Stochastic Differential Equations , 1980 .

[8]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[9]  M. Freidlin,et al.  Random Perturbations of Dynamical Systems , 1984 .

[10]  P. Hänggi,et al.  Reaction-rate theory: fifty years after Kramers , 1990 .

[11]  Karl-Theodor Sturm,et al.  Diffusion processes and heat kernels on metric spaces , 1998 .

[12]  Mark Freidlin,et al.  Random perturbations of nonlinear oscillators , 1998 .

[13]  Mark I. Friedlin Quasi-deterministic approximation, metastability and stochastic resonance , 2000 .

[14]  Mark Freidlin,et al.  On Stable Oscillations and Equilibriums Induced by Small Noise , 2001 .

[15]  Mark Freidlin ON STOCHASTIC PERTURBATIONS OF DYNAMICAL SYSTEMS WITH FAST AND SLOW COMPONENTS , 2001 .

[16]  M. Freidlin,et al.  Averaging Principle for Stochastic Perturbations of Multifrequency Systems , 2003 .