Some Remarks on the Smoluchowski–Kramers Approximation
暂无分享,去创建一个
[1] M. Smoluchowski,et al. Drei Vorträge über Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen , 1927 .
[2] H. Kramers. Brownian motion in a field of force and the diffusion model of chemical reactions , 1940 .
[3] M. Freidlin. Dirichlet’s Problem for an Equation with Periodic Coefficients Depending on a Small Parameter , 1964 .
[4] E. Wong,et al. On the Convergence of Ordinary Integrals to Stochastic Integrals , 1965 .
[5] Edward Nelson. Dynamical Theories of Brownian Motion , 1967 .
[6] harald Cramer,et al. Stationary And Related Stochastic Processes , 1967 .
[7] Zeev Schuss,et al. Theory and Applications of Stochastic Differential Equations , 1980 .
[8] C. Gardiner. Handbook of Stochastic Methods , 1983 .
[9] M. Freidlin,et al. Random Perturbations of Dynamical Systems , 1984 .
[10] P. Hänggi,et al. Reaction-rate theory: fifty years after Kramers , 1990 .
[11] Karl-Theodor Sturm,et al. Diffusion processes and heat kernels on metric spaces , 1998 .
[12] Mark Freidlin,et al. Random perturbations of nonlinear oscillators , 1998 .
[13] Mark I. Friedlin. Quasi-deterministic approximation, metastability and stochastic resonance , 2000 .
[14] Mark Freidlin,et al. On Stable Oscillations and Equilibriums Induced by Small Noise , 2001 .
[15] Mark Freidlin. ON STOCHASTIC PERTURBATIONS OF DYNAMICAL SYSTEMS WITH FAST AND SLOW COMPONENTS , 2001 .
[16] M. Freidlin,et al. Averaging Principle for Stochastic Perturbations of Multifrequency Systems , 2003 .