Molecular Basis for Membrane Recruitment by the PX and C2 Domains of Class II Phosphoinositide 3-Kinase-C2α.

Phosphorylation of phosphoinositides by the class II phosphatidylinositol 3-kinase (PI3K) PI3K-C2α is essential for many processes, including neuroexocytosis and formation of clathrin-coated vesicles. A defining feature of the class II PI3Ks is a C-terminal module composed of phox-homology (PX) and C2 membrane interacting domains; however, the mechanisms that control their specific cellular localization remain poorly understood. Here we report the crystal structure of the C2 domain of PI3K-C2α in complex with the phosphoinositide head-group mimic inositol hexaphosphate, revealing two distinct pockets for membrane binding. The C2 domain preferentially binds to phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol (3,4,5)-trisphosphate, and low-resolution structures of the combined PX-C2 module by small-angle X-ray scattering reveal a compact conformation in which cooperative lipid binding by each domain binding can occur. Finally, we demonstrate an unexpected role for calcium in perturbing the membrane interactions of the PX-C2 module, which we speculate may be important for regulating the activity of PI3K-C2α.

[1]  J. Cha,et al.  Increased intracellular Ca2+ concentrations prevent membrane localization of PH domains through the formation of Ca2+-phosphoinositides , 2017, Proceedings of the National Academy of Sciences.

[2]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[3]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[4]  Dmitri I. Svergun,et al.  Determination of the regularization parameter in indirect-transform methods using perceptual criteria , 1992 .

[5]  J. Backer,et al.  Histidine phosphorylation of the potassium channel KCa3.1 by nucleoside diphosphate kinase B is required for activation of KCa3.1 and CD4 T cells. , 2006, Molecular cell.

[6]  P. Parker,et al.  Phosphatidylinositol 3-kinase C2alpha is essential for ATP-dependent priming of neurosecretory granule exocytosis. , 2005, Molecular biology of the cell.

[7]  Frank Noé,et al.  Spatiotemporal control of endocytosis by phosphatidylinositol-3,4-bisphosphate , 2013, Nature.

[8]  M. Dong,et al.  Cryo-EM structure and biochemical analysis reveal the basis of the functional difference between human PI3KC3-C1 and -C2 , 2017, Cell Research.

[9]  N. Verdaguer,et al.  Structural characterization of the Rabphilin-3A–SNAP25 interaction , 2017, Proceedings of the National Academy of Sciences.

[10]  Jan Steyaert,et al.  Structure and flexibility of the endosomal Vps34 complex reveals the basis of its function on membranes , 2015, Science.

[11]  D. Lambright,et al.  Multivalent endosome targeting by homodimeric EEA1. , 2001, Molecular cell.

[12]  J. Backer The intricate regulation and complex functions of the Class III phosphoinositide 3-kinase Vps34. , 2016, The Biochemical journal.

[13]  M. Bruchez,et al.  PI3K class II α regulates δ-opioid receptor export from the trans-Golgi network , 2017, Molecular biology of the cell.

[14]  Dmitri I Svergun,et al.  Global rigid body modeling of macromolecular complexes against small-angle scattering data. , 2005, Biophysical journal.

[15]  M. Falasca,et al.  Role of class II phosphoinositide 3-kinase in cell signalling. , 2007, Biochemical Society transactions.

[16]  A. Kiger,et al.  Sbf/MTMR13 coordinates PI(3)P and Rab21 regulation in endocytic control of cellular remodeling , 2012, Molecular biology of the cell.

[17]  D I Svergun,et al.  Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. , 1999, Biophysical journal.

[18]  B. Vanhaesebroeck,et al.  The emerging mechanisms of isoform-specific PI3K signalling , 2010, Nature Reviews Molecular Cell Biology.

[19]  J. MacKeigan,et al.  PI3K-C2α knockdown decreases autophagy and maturation of endocytic vesicles , 2017, PloS one.

[20]  V. Haucke,et al.  Phosphatidylinositol 3‐phosphates—at the interface between cell signalling and membrane traffic , 2016, The EMBO journal.

[21]  R. Teasdale,et al.  Insights into the PX (phox-homology) domain and SNX (sorting nexin) protein families: structures, functions and roles in disease. , 2012, The Biochemical journal.

[22]  Dmitri I. Svergun,et al.  PRIMUS: a Windows PC-based system for small-angle scattering data analysis , 2003 .

[23]  R. Schwartz,et al.  Endothelial PI3K-C2α, a class II PI3K, has an essential role in angiogenesis and vascular barrier function , 2012, Nature Medicine.

[24]  S. Tooze,et al.  Coordination of membrane events during autophagy by multiple class III PI3-kinase complexes , 2009, The Journal of cell biology.

[25]  Philip R. Evans,et al.  How good are my data and what is the resolution? , 2013, Acta crystallographica. Section D, Biological crystallography.

[26]  M. J. Fry,et al.  The phosphoinositide (PI) 3-kinase family , 2003, Journal of Cell Science.

[27]  R. Parton,et al.  Ca2+-regulated pool of phosphatidylinositol-3-phosphate produced by phosphatidylinositol 3-kinase C2alpha on neurosecretory vesicles. , 2008, Molecular biology of the cell.

[28]  Roger L. Williams,et al.  Structural and Membrane Binding Analysis of the Phox Homology Domain of Phosphoinositide 3-Kinase-C2α* , 2006, Journal of Biological Chemistry.

[29]  Nicholas K. Sauter,et al.  Architecture of the Synaptotagmin-SNARE Machinery for Neuronal Exocytosis , 2015, Nature.

[30]  J. Pous,et al.  Structural insights into the Ca2+ and PI(4,5)P2 binding modes of the C2 domains of rabphilin 3A and synaptotagmin 1 , 2013, Proceedings of the National Academy of Sciences.

[31]  I. Gaidarov,et al.  The class II phosphoinositide 3-kinase C2alpha is activated by clathrin and regulates clathrin-mediated membrane trafficking. , 2001, Molecular cell.

[32]  Suyong Choi,et al.  PtdIns(4,5)P2 signaling regulates ATG14 and autophagy , 2016, Proceedings of the National Academy of Sciences.

[33]  M. Waterfield,et al.  The Class II Phosphoinositide 3-Kinase PI3K-C2α Is Concentrated in the Trans-Golgi Network and Present in Clathrin-coated Vesicles* , 2000, The Journal of Biological Chemistry.

[34]  Dmitri I. Svergun,et al.  Uniqueness of ab initio shape determination in small-angle scattering , 2003 .

[35]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[36]  T. Kirchhausen,et al.  Dynamics of phosphoinositide conversion in clathrin-mediated endocytic traffic , 2017, Nature.

[37]  P. Hawkins,et al.  Signalling through Class I PI3Ks in mammalian cells. , 2006, Biochemical Society transactions.

[38]  Yanqiu Zhao,et al.  Individual Phosphoinositide 3-Kinase C2α Domain Activities Independently Regulate Clathrin Function* , 2005, Journal of Biological Chemistry.

[39]  H. Bellamy,et al.  Crystal Structure of the C2 Domain of Class II Phosphatidylinositide 3-Kinase C2α* , 2005, Journal of Biological Chemistry.

[40]  Yanqiu Zhao,et al.  Phosphoinositide 3-Kinase C2α Links Clathrin to Microtubule-dependent Movement* , 2007, Journal of Biological Chemistry.

[41]  T. Balla,et al.  Phosphoinositides: tiny lipids with giant impact on cell regulation. , 2013, Physiological reviews.

[42]  J. Backer The regulation of class IA PI 3-kinases by inter-subunit interactions. , 2010, Current topics in microbiology and immunology.

[43]  Maxim V. Petoukhov,et al.  New developments in the ATSAS program package for small-angle scattering data analysis , 2012, Journal of applied crystallography.

[44]  Liisa Holm,et al.  Dali server: conservation mapping in 3D , 2010, Nucleic Acids Res..

[45]  N. Sugimoto,et al.  Class II phosphoinositide 3-kinase alpha-isoform regulates Rho, myosin phosphatase and contraction in vascular smooth muscle. , 2006, The Biochemical journal.

[46]  J. Backer,et al.  PI3K-C2γ is a Rab5 effector selectively controlling endosomal Akt2 activation downstream of insulin signalling , 2015, Nature Communications.

[47]  T. Maffucci,et al.  Class II phosphoinositide 3-kinase C2alpha: what we learned so far. , 2011, International journal of biochemistry and molecular biology.

[48]  Guang-Chao Chen,et al.  Substrate specificity and plasticity of FERM-containing protein tyrosine phosphatases. , 2015, Structure.

[49]  Michael Loran Dustin,et al.  The class II phosphatidylinositol 3 kinase C2beta is required for the activation of the K+ channel KCa3.1 and CD4 T-cells. , 2009, Molecular biology of the cell.

[50]  E. Hirsch,et al.  PI3K‐C2α: One enzyme for two products coupling vesicle trafficking and signal transduction , 2015, FEBS letters.

[51]  G. Merlo,et al.  PI3K Class II α Controls Spatially Restricted Endosomal PtdIns3P and Rab11 Activation to Promote Primary Cilium Function , 2014, Developmental cell.

[52]  A. Hyman,et al.  Quantitative proteomics combined with BAC TransgeneOmics reveals in vivo protein interactions , 2010, The Journal of cell biology.

[53]  Dmitri I Svergun,et al.  Correlation Map, a goodness-of-fit test for one-dimensional X-ray scattering spectra , 2015, Nature Methods.

[54]  Dmitri I. Svergun,et al.  Automated matching of high- and low-resolution structural models , 2001 .

[55]  Jinn-Moon Yang,et al.  Crowning Proteins: Modulating the Protein Surface Properties using Crown Ethers** , 2014, Angewandte Chemie.

[56]  P. Codogno,et al.  Distinct Classes of Phosphatidylinositol 3′-Kinases Are Involved in Signaling Pathways That Control Macroautophagy in HT-29 Cells* , 2000, The Journal of Biological Chemistry.

[57]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .