An improved thermodynamic modeling of the Fe–Cr system down to zero kelvin coupled with key experiments

A thermodynamic modeling of the Fe-Cr system down to 0 K is performed on the basis of our recent comprehensive review of this binary system [W. Xiong, M. Selleby, Q. Chen, J. Odqvist, Y. Du, Evaluation of phase equilibria and thermochemical properties in the Fe-Cr system, Crit. Rev. Solid State Mater. Sci. 35 (2010) 125-152]. The model predicts a sign change for the magnetic ordering energy of mixing rather than the enthalpy of mixing in the bcc phase at 0 K. Designed key experiments are performed not only to check the validity of the present modeling but also to assist in understanding the mechanism for spinodal decomposition of the Fe-Cr alloy. Heat capacities and Curie temperatures of several Fe-rich alloys are determined between 320 and 1093 K by employing differential scanning calorimetry. The measured heat capacities are found to be in remarkable agreement with the prediction based on the present modeling. Microstructural patterns and frequency distribution diagrams of Cr are studied in alloys containing 26.65, 31.95, and 37.76 at.% Cr by using atom probe tomography. The observed phase separation results correspond well with our model-predicted boundary for the spinodal decomposition. Interestingly, a horn on the Cr-rich spinodal boundary is predicted below 200 K for the first time. This work demonstrates a way to bridge the ab initio calculations and CALPHAD approach.

[1]  A. Dinsdale SGTE data for pure elements , 1991 .

[2]  J. Wallenius,et al.  Ab initio formation energies of Fe-Cr alloys , 2003 .

[3]  Xingjun Liu,et al.  An analysis on interaction parameters of binary solid solutions , 1993 .

[4]  B. Johansson,et al.  Electronic structure and effective chemical and magnetic exchange interactions in bcc Fe-Cr alloys , 2009 .

[5]  Bo Sundman,et al.  Modeling of thermodynamic properties for Bcc, Fcc, liquid, and amorphous iron , 2001 .

[6]  Alfredo Caro,et al.  Numerical prediction of thermodynamic properties of iron–chromium alloys using semi-empirical cohesive models: The state of the art , 2009 .

[7]  B. Johansson,et al.  First-principles theory of magnetically driven anomalous ordering in bcc Fe-Cr alloys , 2008 .

[8]  J. Forsythe,et al.  Evidence of itinerant electron ferromagnetism in sigma phase alloys , 1968 .

[9]  K. Binder Nucleation barriers, spinodals, and the Ginzburg criterion , 1984 .

[10]  Y. Chang,et al.  A thermodynamic description and phase relationships of the FeCr system: Part I the BCC phase and the sigma phase , 1987 .

[11]  A. L. Udovskii,et al.  First-principles simulation of an ordered sigma phase of the Fe-Cr system in the ferromagnetic state , 2009 .

[12]  M. Friák,et al.  Ab initio calculations of lattice stability of sigma-phase and phase diagram in the Cr–Fe system , 2002 .

[13]  K. Parlinski,et al.  Vibrational properties of alpha- and sigma-phase Fe-Cr alloy. , 2010, Physical review letters.

[14]  L. Byeong-Joo Revision of thermodynamic descriptions of the Fe-Cr & Fe-Ni liquid phases , 1993 .

[15]  M. Šob,et al.  Energetics and phase diagrams of Fe-Cr and Co-Cr systems from first principles , 2002 .

[16]  M. Hillert,et al.  A model for alloying in ferromagnetic metals , 1978 .

[17]  J. Joubert Crystal chemistry and Calphad modeling of the σ phase , 2008 .

[18]  H. Kuwano Mössbauer Effect Study on the Miscibility Gap of the Iron-Chromium Binary System , 1985 .

[19]  Zi-kui Liu First-Principles Calculations and CALPHAD Modeling of Thermodynamics , 2009 .

[20]  M. Hennion Chemical SRO effects in ferromagnetic Fe alloys in relation to electronic band structure , 1983 .

[21]  Bo Sundman,et al.  A thermodynamic analysis of the fe-cr system , 1982 .

[22]  J. Andersson,et al.  Thermodynamic properties of the CrFe system , 1987 .

[23]  Janne Wallenius,et al.  Electronic origin of the anomalous stability of Fe-rich bcc Fe-Cr alloys , 2006 .

[24]  G. Inden The role of magnetism in the calculation of phase diagrams , 1981 .

[25]  K. Schwarz,et al.  Ab initio-based mean-field theory of the site occupation in the Fe-Cr sigma-phase , 2011 .

[26]  W. A. Dench Adiabatic high-temperature calorimeter for the measurement of heats of alloying , 1963 .

[27]  H. Ino,et al.  The Mossbauer Effect of Fe-V and Fe-Cr Sigma Phase , 1973 .

[28]  I. Malinsky,et al.  A high-temperature calorimeter , 1973 .

[29]  O. Redlich,et al.  Algebraic Representation of Thermodynamic Properties and the Classification of Solutions , 1948 .

[30]  K. Hsieh,et al.  A Thermodynamic description and phase relationships of the FeCr system: Part II the liquid phase and the fcc phase , 1987 .

[31]  I. Mirebeau,et al.  A ug 2 01 0 A new neutron study of the short range order inversion in Fe , 2010 .

[32]  Eric Fawcett,et al.  Spin-density-wave antiferromagnetism in chromium , 1988 .

[33]  Michael K Miller,et al.  Atom Probe Tomography: Analysis at the Atomic Level , 2012 .

[34]  Y. Iguchi,et al.  A Calorimetric Study of Heats of Mixing of Liquid Iron Alloys: Fe-Cr, Fe-Mo, Fe-W, Fe-V, Fe-Nb, Fe-Ta@@@Fe-Cr, Fe-Mo, Fe-W, Fe-V, Fe-Nb, Fe-Ta , 1982 .

[35]  D. Matson,et al.  Mixing enthalpy measurements in the liquid ternary system iron-nickel-chromium and its binaries , 1998 .

[36]  X-ray Microdiffraction Images of Antiferromagnetic Domain Evolution in Chromium , 2002, Science.

[37]  J. Vřešťál,et al.  First-principles calculations of energetics of sigma phase formation and thermodynamic modelling in the Cr–Fe–W system , 2004 .

[38]  J. Andersson Thermodynamic properties of chromium , 1985 .

[39]  J. Vřešťál,et al.  Ab Initio Study of Formation Energy and Magnetism of Sigma Phase in Cr-Fe and Cr-Co Systems , 2010 .

[40]  A. Kroupa,et al.  Application of Ab Initio Electronic Structure Calculations in Construction of Phase Diagrams of Metallic Systems with Complex Phases , 2009 .

[41]  W. Xiong,et al.  Magnetic phase diagram of the Fe-Ni system , 2011 .

[42]  L. Kaufman Proceedings of the fourth calphad meeting Workshop on computer based coupling of thermochemical and phase diagram data held 18–22 August 1975 at the National Bureau of Standards, Gaithersburg, Maryland☆ , 1977 .

[43]  M. Hennion,et al.  First measurement of short-range-order inversion as a function of concentration in a transition alloy , 1984 .

[44]  Yong Du,et al.  Phase Equilibria and Thermodynamic Properties in the Fe-Cr System , 2010 .

[45]  J. Tomiska The system Fe–Ni–Cr: revision of the thermodynamic description , 2004 .