Mantle Structure beneath the Western United States and Its Implications for Convection Processes

[1] We present tomographic images of the mantle structure beneath the western United States. Our Dynamic North America Models of P and S velocity structure (DNA07-P and DNA07-S) use teleseismic body waves recorded at ∼600 seismic stations provided by the Earthscope Transportable Array and regional networks. DNA07-P and -S benefit from the unprecedented aperture of the network while maintaining a dense station distribution providing high-resolution body wave imaging of features through the transition zone and into the lower mantle. The main features imaged include (1) the Juan de Fuca subduction system that bottoms at ∼400 km beneath Oregon, implying interaction with the Yellowstone anomaly; (2) a low-velocity conduit beneath Yellowstone National Park that bottoms at 500 km and dips toward the northwest; (3) shallow low-velocity anomalies (upper 200 km) beneath the eastern Snake River Plain (ESRP) and the High Lava Plains, and a deep low-velocity anomaly (>600 km) beneath the ESRP but not Newberry; (4) a low-velocity “slab gap” to ∼400 km depth immediately south of the Mendocino Triple Junction and south of the Gorda slab; and (5) high-velocity “drips” beneath the Transverse Ranges, the southern Central Valley/Sierra Nevada, and central Nevada. These observations reveal extremely heterogeneous mantle structure for the western United States and suggest that we are only just beginning to image the complex interactions between geologic objects. The transportable array allows for analysis of the relationships between these anomalies in an internally consistent single tomographic model. The DNA velocity models are available for download and slicing at http://dna.berkeley.edu.

[1]  L. Elkins‐Tanton,et al.  Vertical mantle flow associated with a lithospheric drip beneath the Great Basin , 2009 .

[2]  F. Pollitz Observations and interpretation of fundamental mode Rayleigh wavefields recorded by the Transportable Array (USArray) , 2008 .

[3]  Guust Nolet,et al.  Two-stage subduction history under North America inferred from multiple-frequency tomography , 2008 .

[4]  K. Dueker,et al.  Imaging Yellowstone plume‐lithosphere interactions from inversion of ballistic and diffusive Rayleigh wave dispersion and crustal thickness data , 2008 .

[5]  B. Hanan,et al.  A plume-triggered delamination origin for the Columbia River Basalt Group , 2008 .

[6]  Gary L. Pavlis,et al.  Upper Mantle Heterogeneity beneath North America from Travel Time Tomography with Global and USArray Transportable Array Data , 2008 .

[7]  M. Mcwilliams,et al.  Tectonic and magmatic evolution of the northwestern Basin and Range and its transition to unextended volcanic plateaus: Black Rock Range, Nevada , 2008 .

[8]  Michael H. Ritzwoller,et al.  Teleseismic surface wave tomography in the western U.S. using the Transportable Array component of USArray , 2008 .

[9]  P. Gobster Yellowstone Hotspot , 2008, Landscape Journal.

[10]  K. Dueker,et al.  Ubiquitous low‐velocity layer atop the 410‐km discontinuity in the northern Rocky Mountains , 2007 .

[11]  F. Marone,et al.  Non-linear crustal corrections in high-resolution regional waveform seismic tomography , 2007 .

[12]  R. Allen,et al.  The Fate of the Juan de Fuca Plate , 2007 .

[13]  Mei Xue,et al.  Origin of the Newberry Hotspot Track: Evidence from shear-wave splitting , 2006 .

[14]  R. Allen,et al.  VP and VS structure of the Yellowstone hot spot from teleseismic tomography: Evidence for an upper mantle plume , 2006 .

[15]  J. Roering,et al.  A lithospheric instability origin for Columbia River flood basalts and Wallowa Mountains uplift in northeast Oregon , 2005, Nature.

[16]  Thomas J. Owens,et al.  Automated Receiver Function Processing , 2005 .

[17]  Robert B. Smith,et al.  Models of lithosphere and asthenosphere anisotropic structure of the Yellowstone hot spot from shear wave splitting , 2005 .

[18]  Kenneth G. Dueker,et al.  Teleseismic P‐wave tomogram of the Yellowstone plume , 2005 .

[19]  B. Jordan Age-progressive volcanism of the Oregon High Lava Plains: Overview and evaluation of tectonic models , 2005 .

[20]  R. Duncan,et al.  Geochronology of age-progressive volcanism of the Oregon High Lava Plains : implications for the plume interpretation of Yellowstone , 2004 .

[21]  D. Fee,et al.  Mantle transition zone topography and structure beneath the Yellowstone hotspot , 2004 .

[22]  R. Snieder,et al.  The Fresnel volume and transmitted waves , 2004 .

[23]  J. Saleeby,et al.  Production and loss of high‐density batholithic root, southern Sierra Nevada, California , 2003 .

[24]  D. Giardini,et al.  Inferring upper-mantle temperatures from seismic velocities , 2003 .

[25]  Richard M. Allen,et al.  The elusive mantle plume , 2003 .

[26]  W. J. Morgan,et al.  Imaging the mantle beneath Iceland using integrated seismological techniques , 2002 .

[27]  S. Grand Mantle shear–wave tomography and the fate of subducted slabs , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[28]  Gillian R. Foulger,et al.  Upper-mantle origin of the Yellowstone hotspot , 2002 .

[29]  Richard G. Gordon,et al.  Young tracks of hotspots and current plate velocities , 2002 .

[30]  R. Hyndman,et al.  An inverted continental Moho and serpentinization of the forearc mantle , 2002, Nature.

[31]  B. Tikoff,et al.  Lithospheric buckling of the Laramide foreland during Late Cretaceous and Paleogene, western United States , 2001 .

[32]  B. Zurek,et al.  Thick-structured Proterozoic lithosphere of the Rocky Mountain region , 2001 .

[33]  B. Steinberger Plumes in a convecting mantle: Models and observations for individual hotspots , 2000 .

[34]  Kenneth G. Dueker,et al.  Beneath Yellowstone: Evaluating Plume and Nonplume Models Using Teleseismic Images of the Upper Mantle , 2000 .

[35]  C. Bassin,et al.  The Current Limits of resolution for surface wave tomography in North America , 2000 .

[36]  R. Saltus,et al.  Yellowstone plume head; postulated tectonic relations to the Vancouver Slab, continental boundaries, and climate , 2000 .

[37]  Harmen Bijwaard,et al.  Closing the gap between regional and global travel time tomography , 1998 .

[38]  Eiichi Takahahshi,et al.  Origin of the Columbia River basalts: melting model of a heterogeneous plume head , 1998 .

[39]  D. Anderson The helium paradoxes. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[40]  J. Chesley,et al.  Crust–mantle interaction in large igneous provinces: Implications from the Re–Os isotope systematics of the Columbia River flood basalts , 1998 .

[41]  G. Nolet,et al.  Upper mantle S velocity structure of North America , 1997 .

[42]  Donald J. DePaolo,et al.  HELIUM AND NEON ISOTOPES IN THE IMNAHA BASALT, COLUMBIA RIVER BASALT GROUP: EVIDENCE FOR A YELLOWSTONE PLUME SOURCE , 1997 .

[43]  Kelin Wang,et al.  Transform push, oblique subduction resistance, and intraplate stress of the Juan de Fuca Plate , 1997 .

[44]  M. Bostock,et al.  Upper mantle structure of the northern Cascadia subduction zone , 1995 .

[45]  George Helffrich,et al.  Phase transition Clapeyron slopes and transition zone seismic discontinuity topography , 1994 .

[46]  E. Humphreys,et al.  Physical state of the western U.S. upper mantle , 1994 .

[47]  E. Humphreys,et al.  Western U.S. upper mantle structure , 1994 .

[48]  H. Kanamori,et al.  Missing roots and mantle “drips”: Regional Pn and teleseismic arrival times in the southern Sierra Nevada and vicinity, California , 1994 .

[49]  U. Christensen,et al.  Three-dimensional modeling of plume-lithosphere interaction , 1994 .

[50]  Luis Rivera,et al.  On the use of the checker-board test to assess the resolution of tomographic inversions , 1993 .

[51]  Mark A. Richards,et al.  Origin of the Columbia Plateau and Snake River plain: Deflection of the Yellowstone plume , 1993 .

[52]  R. W. Griffiths,et al.  Mantle plumes and continental tectonics. , 1993, Science.

[53]  Paul Karl Link,et al.  Regional Geology of Eastern Idaho and Western Wyoming , 1992 .

[54]  G. Biasi,et al.  P-wave image of the upper mantle structure of central California and southern Nevada , 1992 .

[55]  R. W. Griffiths,et al.  Mantle Plumes and Continental Tectonics , 1992, Science.

[56]  D. Stevenson,et al.  Physical model of source region of subduction zone volcanics , 1992 .

[57]  Kenneth L. Pierce,et al.  Chapter 1: The track of the Yellowstone hot spot: Volcanism, faulting, and uplift , 1992 .

[58]  H. M. Iyer,et al.  Imaging the Juan de Fuca Plate beneath southern Oregon using teleseismic P wave residuals , 1991 .

[59]  D. Draper Late cenozoic bimodal magmatism in the northern Basin and Range Province of southeastern Oregon , 1991 .

[60]  B. Kennett,et al.  Traveltimes for global earthquake location and phase identification , 1991 .

[61]  B. Hager,et al.  A kinematic model for the Late Cenozoic development of southern California crust and upper mantle , 1990 .

[62]  R. Gordon,et al.  Current plate velocities relative to the hotspots incorporating the NUVEL-1 global plate motion model , 1990 .

[63]  Norman H. Sleep,et al.  Hotspots and Mantle Plumes' Some Phenomenology , 1990 .

[64]  John C. VanDecar,et al.  Determination of teleseismic relative phase arrival times using multi-channel cross-correlation and least squares , 1990 .

[65]  J. Severinghaus,et al.  Chapter 1: Cenozoic geometry and thermal state of the subducting slabs beneath western North America , 1990 .

[66]  Kenneth L. Pierce,et al.  The track of the Yellowstone hot spot--volcanism, faulting and uplift , 1990 .

[67]  R. Fournier Geochemistry and Dynamics of the Yellowstone National Park Hydrothermal System , 1989 .

[68]  John W. Geissman,et al.  Parabolic distribution of circumeastern Snake River Plain seismicity and latest Quaternary faulting: Migratory pattern and association with the Yellowstone hotspot , 1989 .

[69]  E. Humphreys,et al.  Tomographic image of the Juan de Fuca Plate beneath Washington and western Oregon using teleseismic , 1988 .

[70]  Douglas S. Wilson,et al.  Tectonic history of the Juan de Fuca Ridge over the last 40 million years , 1988 .

[71]  W. Ernst Metamorphic terranes, isotopic provinces, and implications for crustal growth of the western United States , 1988 .

[72]  C. Weaver,et al.  Upper mantle structure from teleseismic P wave arrivals in Washington and northern Oregon , 1986 .

[73]  R. Clayton,et al.  A tomographic image of mantle structure beneath Southern California , 1984 .

[74]  W. Snyder,et al.  Geometry of triple junctions related to San Andreas Transform , 1979 .

[75]  J. Lupton,et al.  Helium isotope ratios in Yellowstone and Lassen Park volcanic gases , 1978 .

[76]  E. McKee,et al.  13: Late Cenozoic volcanic and tectonic evolution of the Great Basin and Columbia Intermontane regions , 1978 .

[77]  Robert B. Smith,et al.  Cenozoic tectonics and regional geophysics of the western Cordillera , 1978 .

[78]  V. Matthews Laramide folding associated with basement block faulting in the western United States , 1978 .

[79]  Robert B. Smith Intraplate tectonics of the western North American plate , 1977 .

[80]  William C. Orr,et al.  Geology of Oregon , 1976 .

[81]  D. Blackwell Heat-flow determinations in the northwestern United States , 1969 .