Crop health condition monitoring based on the identification of biotic and abiotic stresses by using hierarchical self-organizing classifiers

[1]  A. Masoni,et al.  Spectral Properties of Leaves Deficient in Iron, Sulfur, Magnesium, and Manganese , 1996 .

[2]  A. Gitelson,et al.  Novel algorithms for remote estimation of vegetation fraction , 2002 .

[3]  G. Carter,et al.  Leaf optical properties in higher plants: linking spectral characteristics to stress and chlorophyll concentration. , 2001, American journal of botany.

[4]  Steffen Gebhardt,et al.  Geostatistical analysis of the spatiotemporal dynamics of powdery mildew and leaf rust in wheat. , 2009, Phytopathology.

[5]  V. Alchanatis,et al.  Review: Sensing technologies for precision specialty crop production , 2010 .

[6]  Min Zhang,et al.  Automatic citrus canker detection from leaf images captured in field , 2011, Pattern Recognit. Lett..

[7]  Robin Gebbers,et al.  Precision Agriculture and Food Security , 2010, Science.

[8]  Minghua Zhang,et al.  Spectral prediction of Phytophthora infestans infection on tomatoes using artificial neural network (ANN) , 2008, International Journal of Remote Sensing.

[9]  Erich-Christian Oerke,et al.  Safeguarding production-losses in major crops and the role of crop protection , 2004 .

[10]  B. Lorenzen,et al.  Changes in leaf spectral properties induced in barley by cereal powdery mildew , 1989 .

[11]  Gregory A. Carter,et al.  Identification of a far-red reflectance response to ectomycorrhizae in slash pine , 1992 .

[12]  V. P. Polischuk,et al.  Changes in reflectance spectrum characteristic of nicotiana debneyi plant under the influence of viral infection , 1997 .

[13]  C. Hillnhütter,et al.  Neue Ansätze zur frühzeitigen Erkennung und Lokalisierung von Zuckerrübenkrankheiten , 2008, Gesunde Pflanzen.

[14]  James R. Glass,et al.  Developments and directions in speech recognition and understanding, Part 1 [DSP Education] , 2009, IEEE Signal Processing Magazine.

[15]  Faisal Ahmed,et al.  Classification of crops and weeds from digital images: A support vector machine approach , 2012 .

[16]  Jon Atli Benediktsson,et al.  Sensitivity of Support Vector Machines to Random Feature Selection in Classification of Hyperspectral Data , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[17]  Yubin Lan,et al.  Review: Development of soft computing and applications in agricultural and biological engineering , 2010 .

[18]  H. Ramon,et al.  Automatic detection of ‘yellow rust’ in wheat using reflectance measurements and neural networks , 2004 .

[19]  Anne-Katrin Mahlein,et al.  Hyperspectral imaging for small-scale analysis of symptoms caused by different sugar beet diseases , 2012, Plant Methods.

[20]  L. Plümer,et al.  Original paper: Early detection and classification of plant diseases with Support Vector Machines based on hyperspectral reflectance , 2010 .

[21]  D. Hagenbeek,et al.  Thermal and chlorophyll-fluorescence imaging distinguish plant-pathogen interactions at an early stage. , 2004, Plant & cell physiology.

[22]  Anne-Katrin Mahlein,et al.  Recent advances in sensing plant diseases for precision crop protection , 2012, European Journal of Plant Pathology.

[23]  L. Buydens,et al.  Supervised Kohonen networks for classification problems , 2006 .

[24]  Johann Gasteiger,et al.  Neural networks with counter-propagation learning strategy used for modelling , 1995 .