Glutamate and GABA receptors and transporters in the basal ganglia: What does their subsynaptic localization reveal about their function?

GABA and glutamate, the main transmitters in the basal ganglia, exert their effects through ionotropic and metabotropic receptors. The dynamic activation of these receptors in response to released neurotransmitter depends, among other factors, on their precise localization in relation to corresponding synapses. The use of high resolution quantitative electron microscope immunocytochemical techniques has provided in-depth description of the subcellular and subsynaptic localization of these receptors in the CNS. In this article, we review recent findings on the ultrastructural localization of GABA and glutamate receptors and transporters in monkey and rat basal ganglia, at synaptic, extrasynaptic and presynaptic sites. The anatomical evidence supports numerous potential locations for receptor-neurotransmitter interactions, and raises important questions regarding mechanisms of activation and function of synaptic versus extrasynaptic receptors in the basal ganglia.

[1]  John A. Wilson,et al.  Baclofen attenuates hyperpolarizing not depolarizing responses of caudate neurons in cat , 1985, Brain Research.

[2]  P. Somogyi,et al.  Immunocytochemical localization of the alpha 1 and beta 2/3 subunits of the GABAA receptor in relation to specific GABAergic synapses in the dentate gyrus. , 1995, The European journal of neuroscience.

[3]  T. Takano,et al.  Beyond the role of glutamate as a neurotransmitter , 2002, Nature Reviews Neuroscience.

[4]  W. Yung,et al.  Rotational behavior and electrophysiological effects induced by GABAB receptor activation in rat globus pallidus , 2002, Neuroscience.

[5]  H. Kita,et al.  Neostriatal and globus pallidus stimulation induced inhibitory postsynaptic potentials in entopeduncular neurons in rat brain slice preparations , 2001, Neuroscience.

[6]  D. Kullmann,et al.  Tonically active GABAA receptors: modulating gain and maintaining the tone , 2004, Trends in Neurosciences.

[7]  J. Kemp,et al.  Ionotropic and metabotropic glutamate receptor structure and pharmacology , 2005, Psychopharmacology.

[8]  M. Bellomo,et al.  Endogenous Activation of Group-I Metabotropic Glutamate Receptors Is Required for Differentiation and Survival of Cerebellar Purkinje Cells , 2001, The Journal of Neuroscience.

[9]  S. Nakanishi,et al.  Tamalin, a PDZ Domain-Containing Protein, Links a Protein Complex Formation of Group 1 Metabotropic Glutamate Receptors and the Guanine Nucleotide Exchange Factor Cytohesins , 2002, The Journal of Neuroscience.

[10]  A. Charara,et al.  Subcellular and Subsynaptic Localization of Presynaptic and Postsynaptic Kainate Receptor Subunits in the Monkey Striatum , 2001, The Journal of Neuroscience.

[11]  R. Nicoll,et al.  Local and diffuse synaptic actions of GABA in the hippocampus , 1993, Neuron.

[12]  J. Bolam,et al.  Distribution of glutamate receptor subunits at neurochemically characterized synapses in the entopeduncular nucleus and subthalamic nucleus of the rat , 1998, The Journal of comparative neurology.

[13]  J. Desce,et al.  Glutamatergic Control of Dopamine Release in the Rat Striatum: Evidence for Presynaptic N‐Methyl‐D‐Aspartate Receptors on Dopaminergic Nerve Terminals , 1991, Journal of neurochemistry.

[14]  F. Ciruela,et al.  Molecular Determinants of Metabotropic Glutamate Receptor 1B Trafficking , 2001, Molecular and Cellular Neuroscience.

[15]  A. Charara,et al.  GABAB and group I metabotropic glutamate receptors in the striatopallidal complex in primates , 2000, Journal of anatomy.

[16]  A. Merighi,et al.  Post-embedding immunogold staining , 1993 .

[17]  Peter Somogyi,et al.  Segregation of Different GABAA Receptors to Synaptic and Extrasynaptic Membranes of Cerebellar Granule Cells , 1998, The Journal of Neuroscience.

[18]  P. Somogyi,et al.  High-resolution immunogold localization of AMPA type glutamate receptor subunits at synaptic and non-synaptic sites in rat hippocampus , 1995, Neuroscience.

[19]  J. Bolam,et al.  Synaptic localization of ionotropic glutamate receptors in the rat substantia nigra , 2000, Neuroscience.

[20]  Tohru Yoshioka,et al.  GABAB receptor activation enhances mGluR-mediated responses at cerebellar excitatory synapses , 2001, Nature Neuroscience.

[21]  D. Kullmann Spillover and synaptic cross talk mediated by glutamate and GABA in the mammalian brain. , 2000, Progress in brain research.

[22]  Y. Smith,et al.  GABAB receptors in the centromedian/parafascicular thalamic nuclear complex: An ultrastructural analysis of GABABR1 and GABABR2 in the monkey thalamus , 2006 .

[23]  R. Shigemoto,et al.  Immunohistochemical localization of metabotropic glutamate receptors, mGluR7a and mGluR7b, in the central nervous system of the adult rat and mouse: A light and electron microscopic study , 1998, The Journal of comparative neurology.

[24]  Brian K. Hoffpauir,et al.  Activation of mGluR5 modulates GABA(A) receptor function in retinal amacrine cells. , 2002, Journal of neurophysiology.

[25]  E. M. Barnes Intracellular trafficking of GABAA receptors , 2000 .

[26]  L. Vanderschuren,et al.  Synergistically Interacting Dopamine D1 and NMDA Receptors Mediate Nonvesicular Transporter-Dependent GABA Release from Rat Striatal Medium Spiny Neurons , 2000, The Journal of Neuroscience.

[27]  P. Worley,et al.  Homer: a link between neural activity and glutamate receptor function , 2000, Current Opinion in Neurobiology.

[28]  J. Garthwaite,et al.  Synaptic activation of metabotropic glutamate receptors in the parallel Fibre-Purkinje cell pathway in rat cerebellar slices , 1994, Neuroscience.

[29]  Daniel Choquet,et al.  Active surface transport of metabotropic glutamate receptors through binding to microtubules and actin flow , 2003, Journal of Cell Science.

[30]  Hui Zhang,et al.  Glutamate Spillover in the Striatum Depresses Dopaminergic Transmission by Activating Group I Metabotropic Glutamate Receptors , 2003, The Journal of Neuroscience.

[31]  A. Parent Extrinsic connections of the basal ganglia , 1990, Trends in Neurosciences.

[32]  J. Yelnik Functional anatomy of the basal ganglia , 2002, Movement disorders : official journal of the Movement Disorder Society.

[33]  H. Kita Glutamatergic and gabaergic postsynaptic responses of striatal spiny neurons to intrastriatal and cortical stimulation recorded in slice preparations , 1996, Neuroscience.

[34]  H. Bading,et al.  Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways , 2002, Nature Neuroscience.

[35]  G. Banker,et al.  The Role of Protein Interaction Motifs in Regulating the Polarity and Clustering of the Metabotropic Glutamate Receptor mGluR1a , 2006, The Journal of Neuroscience.

[36]  Masahiko Watanabe,et al.  Target-Cell-Specific Left-Right Asymmetry of NMDA Receptor Content in Schaffer Collateral Synapses in ϵ1/NR2A Knock-Out Mice , 2004, The Journal of Neuroscience.

[37]  P. Winn,et al.  The pedunculopontine tegmental nucleus: Where the striatum meets the reticular formation , 1995, Progress in Neurobiology.

[38]  Mahlon R. DeLong,et al.  The Basal Ganglia VI , 2003, Advances in Behavioral Biology.

[39]  S. Amara,et al.  Excitatory amino acid transporters: keeping up with glutamate , 2002, Neurochemistry International.

[40]  V. Pickel,et al.  Spiny neurons lacking choline acetyltransferase immunoreactivity are major targets of cholinergic and catecholaminergic terminals in rat striatum , 1990, Journal of neuroscience research.

[41]  W. Reimann Inhibition by GABA, baclofen and gabapentin of dopamine release from rabbit caudate nucleus: are there common or different sites of action? , 1983, European journal of pharmacology.

[42]  S. Johnson,et al.  Presynaptic GABAB and adenosine A1 receptors regulate synaptic transmission to rat substantia nigra reticulata neurones , 1997, The Journal of physiology.

[43]  Juan Lerma,et al.  Roles and rules of kainate receptors in synaptic transmission , 2003, Nature Reviews Neuroscience.

[44]  O. Ottersen,et al.  The Arrangement of Glutamate Receptors in Excitatory Synapses , 1999, Annals of the New York Academy of Sciences.

[45]  S. Augood,et al.  Localization of calcium-binding proteins and GABA transporter (GAT-1) messenger RNA in the human subthalamic nucleus , 1999, Neuroscience.

[46]  G. Gründer,et al.  Drug interactions at GABA(A) receptors. , 2002, Progress in neurobiology.

[47]  T. Branchek,et al.  Localization of messenger RNAs encoding three GABA transporters in rat brain: an in situ hybridization study. , 1995, Brain research. Molecular brain research.

[48]  P. Conn,et al.  Activation of group III mGluRs inhibits GABAergic and glutamatergic transmission in the substantia nigra pars reticulata. , 2001, Journal of neurophysiology.

[49]  P. Somogyi,et al.  The metabotropic glutamate receptor (mGluRlα) is concentrated at perisynaptic membrane of neuronal subpopulations as detected by immunogold reaction , 1993, Neuron.

[50]  J. Bolam,et al.  Experimental Neuroanatomy: A Practical Approach , 1992 .

[51]  J. Aceves,et al.  GABAB receptor activation partially inhibits N-methyl-D-aspartate-mediated tyrosine hydroxylase stimulation in rat striatal slices. , 1992, European journal of pharmacology.

[52]  R. Petralia,et al.  The metabotropic glutamate receptors, MGLUR2 and MGLUR3, show unique postsynaptic, presynaptic and glial localizations , 1996, Neuroscience.

[53]  Y. Smith,et al.  Metabotropic glutamate receptor 2 modulates excitatory synaptic transmission in the rat globus pallidus , 2005, Neuropharmacology.

[54]  Y. Smith,et al.  Differential Subcellular Localization of mGluR1a and mGluR5 in the Rat and Monkey Substantia Nigra , 2001, The Journal of Neuroscience.

[55]  M. Raiteri,et al.  International Union of Pharmacology. XXXIII. Mammalian γ-Aminobutyric AcidB Receptors: Structure and Function , 2002, Pharmacological Reviews.

[56]  A. D. De Blas,et al.  alpha5 Subunit-containing GABA(A) receptors form clusters at GABAergic synapses in hippocampal cultures. , 2002, Neuroreport.

[57]  D. Winder,et al.  Roles of metabotropic glutamate receptors in glial function and glial‐neuronal communication , 1996, Journal of neuroscience research.

[58]  R. Dingledine,et al.  The glutamate receptor ion channels. , 1999, Pharmacological reviews.

[59]  J. Arias-Montaño,et al.  [3H] γ-aminobutyric acid transport in rat substantia nigra pars reticulata synaptosomes: pharmacological characterization and phorbol ester-induced inhibition , 1999, Neuroscience Letters.

[60]  Shi V. Liu Debating controversies can enhance creativity , 2000, Nature.

[61]  N. Rajakumar,et al.  The pallidostriatal projection in the rat: a recurrent inhibitory loop? , 1994, Brain Research.

[62]  A. N. van den Pol,et al.  Distribution of metabotropic glutamate receptor mGluR5 immunoreactivity in rat brain , 1995, The Journal of comparative neurology.

[63]  J. Bolam,et al.  Subcellular localization of GABAB receptor subunits in rat globus pallidus , 2004, The Journal of comparative neurology.

[64]  David Robbe,et al.  Homer-Dependent Cell Surface Expression of Metabotropic Glutamate Receptor Type 5 in Neurons , 2002, Molecular and Cellular Neuroscience.

[65]  F. Fujiyama,et al.  Synaptic localization of GABAA receptor subunits in the striatum of the rat , 2000, The Journal of comparative neurology.

[66]  Darrell R. Abernethy,et al.  International Union of Pharmacology: Approaches to the Nomenclature of Voltage-Gated Ion Channels , 2003, Pharmacological Reviews.

[67]  G. Collingridge,et al.  Removal of AMPA Receptors (AMPARs) from Synapses Is Preceded by Transient Endocytosis of Extrasynaptic AMPARs , 2004, The Journal of Neuroscience.

[68]  D. Erlij,et al.  Adenosine A2A receptor stimulation decreases GAT-1-mediated GABA uptake in the globus pallidus of the rat , 2006, Neuropharmacology.

[69]  Nils Ole Dalby,et al.  Inhibition of gamma-aminobutyric acid uptake: anatomy, physiology and effects against epileptic seizures. , 2003, European journal of pharmacology.

[70]  B. Barbour An Evaluation of Synapse Independence , 2001, The Journal of Neuroscience.

[71]  Y. Smith,et al.  Activation of Group I Metabotropic Glutamate Receptors Produces a Direct Excitation and Disinhibition of GABAergic Projection Neurons in the Substantia Nigra Pars Reticulata , 2001, The Journal of Neuroscience.

[72]  Peter Somogyi,et al.  Cell Type and Pathway Dependence of Synaptic AMPA Receptor Number and Variability in the Hippocampus , 1998, Neuron.

[73]  A. Munhall,et al.  Calcium‐dependent subthreshold oscillations determine bursting activity induced by N‐methyl‐d‐aspartate in rat subthalamic neurons in vitro , 2004, The European journal of neuroscience.

[74]  J. Bolam,et al.  Cellular and sub-cellular localisation of GABA(B1) and GABA(B2) receptor proteins in the rat cerebellum. , 2000, Brain research. Molecular brain research.

[75]  P. Calabresi,et al.  The corticostriatal projection: from synaptic plasticity to dysfunctions of the basal ganglia , 1996, Trends in Neurosciences.

[76]  F. Conquet,et al.  Immunohistochemical localization of the mGluR1β metabotropic glutamate receptor in the adult rodent forebrain: Evidence for a differential distribution of mGluR1 splice variants , 1998, The Journal of comparative neurology.

[77]  J. Tepper,et al.  Functional diversity and specificity of neostriatal interneurons , 2004, Current Opinion in Neurobiology.

[78]  T. Otis,et al.  Neuronal Glutamate Transporters Control Activation of Postsynaptic Metabotropic Glutamate Receptors and Influence Cerebellar Long-Term Depression , 2001, Neuron.

[79]  R. Shigemoto,et al.  Differential distribution of release‐related proteins in the hippocampal CA3 area as revealed by freeze‐fracture replica labeling , 2005, The Journal of comparative neurology.

[80]  E. Syková,et al.  Extrasynaptic volume transmission and diffusion parameters of the extracellular space , 2004, Neuroscience.

[81]  R. Malenka,et al.  Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. , 2000, Annual review of neuroscience.

[82]  K. Kuriyama,et al.  GABAA receptor-mediated k+-evoked gaba release from globus pallidus—analysis using microdialysis , 1997, Neurochemistry International.

[83]  R. Huganir,et al.  A light and electron microscopic study of glutamate receptors in the monkey subthalamic nucleus , 2000, Journal of neurocytology.

[84]  P. Groves,et al.  Fine structure and synaptic connections of the common spiny neuron of the rat neostriatum: a study employing intracellular inject of horseradish peroxidase. , 1980, The Journal of comparative neurology.

[85]  Y. Smith,et al.  Localization and function of pre‐ and postsynaptic kainate receptors in the rat globus pallidus , 2006, The European journal of neuroscience.

[86]  M. Kelland,et al.  A role for non-NMDA excitatory amino acid receptors in regulating the basal activity of rat globus pallidus neurons and their activation by the subthalamic nucleus , 1994, Brain Research.

[87]  H. Kita,et al.  Excitatory Cortical Inputs to Pallidal Neurons Via the Subthalamic Nucleus in the Monkey , 2000 .

[88]  C. Wilson,et al.  Overwhelmingly asynchronous firing of rat subthalamic nucleus neurones in brain slices provides little evidence for intrinsic interconnectivity , 2004, Neuroscience.

[89]  F. Fujiyama,et al.  Synaptic localization of GABAA receptor subunits in the substantia nigra of the rat: effects of quinolinic acid lesions of the striatum , 2002, The European journal of neuroscience.

[90]  P Strata,et al.  Postsynaptic current mediated by metabotropic glutamate receptors in cerebellar Purkinje cells. , 1998, Journal of neurophysiology.

[91]  A. Araque,et al.  Glutamate‐dependent astrocyte modulation of synaptic transmission between cultured hippocampal neurons , 1998, The European journal of neuroscience.

[92]  H. Kamiya,et al.  Glutamate receptors in the mammalian central nervous system , 1998, Progress in Neurobiology.

[93]  M. Kano,et al.  Extracellular Calcium Controls the Dynamic Range of Neuronal Metabotropic Glutamate Receptor Responses , 2002, Molecular and Cellular Neuroscience.

[94]  M. Bevan,et al.  Globus Pallidus Neurons Dynamically Regulate the Activity Pattern of Subthalamic Nucleus Neurons through the Frequency-Dependent Activation of Postsynaptic GABAA and GABAB Receptors , 2005, The Journal of Neuroscience.

[95]  A. Charara,et al.  Synaptic and extrasynaptic GABA-A and GABA-B receptors in the globus pallidus: An electron microscopic immunogold analysis in monkeys , 2005, Neuroscience.

[96]  A. Macdermott,et al.  Presynaptic ionotropic receptors and control of transmitter release , 2004, Nature Reviews Neuroscience.

[97]  Zheng-Xiong Xi,et al.  The Origin and Neuronal Function of In Vivo Nonsynaptic Glutamate , 2002, The Journal of Neuroscience.

[98]  G. Engberg,et al.  GABAB‐Receptor activation alters the firing pattern of dopamine neurons in the rat substantia nigra , 1993, Synapse.

[99]  Yu Tian Wang,et al.  Dual Regulation of NMDA Receptor Functions by Direct Protein-Protein Interactions with the Dopamine D1 Receptor , 2002, Cell.

[100]  F. Lee,et al.  Regulation of Dopamine D1 Receptor Function by Physical Interaction with the Nmda Receptors Functional Interactions between Dopamine D1-like Receptors and Nmda Subtype Glutamate Receptors Have Been Implicated in the Maintenance of Normal Brain Activity and Neurological Dysfunction. Although Modulati , 2022 .

[101]  M. Ehlers,et al.  Lateral organization of endocytic machinery in dendritic spines , 2004, Nature Neuroscience.

[102]  I. Mody,et al.  Bridging the cleft at GABA synapses in the brain , 1994, Trends in Neurosciences.

[103]  Y. Michotte,et al.  Tonic GABA-ergic modulation of striatal dopamine release studied by in vivo microdialysis in the freely moving rat. , 1995, European journal of pharmacology.

[104]  H. Kita,et al.  Balance of Monosynaptic Excitatory and Disynaptic Inhibitory Responses of the Globus Pallidus Induced after Stimulation of the Subthalamic Nucleus in the Monkey , 2005, The Journal of Neuroscience.

[105]  G. Bernardi,et al.  Distinct mechanisms of presynaptic inhibition at GABAergic synapses of the rat substantia nigra pars compacta. , 2005, Journal of neurophysiology.

[106]  A. Charara,et al.  Subcellular and Subsynaptic Localization of Glutamate Transporters in the Monkey Basal Ganglia , 2002 .

[107]  P Jeffrey Conn,et al.  Group III Metabotropic Glutamate Receptor-Mediated Modulation of the Striatopallidal Synapse , 2003, The Journal of Neuroscience.

[108]  F. Ciruela,et al.  Interactions of the C terminus of metabotropic glutamate receptor type 1alpha with rat brain proteins: evidence for a direct interaction with tubulin. , 1999, Journal of neurochemistry.

[109]  E. Seeberg,et al.  Differential Expression of Two Glial Glutamate Transporters in the Rat Brain: an In Situ Hybridization Study , 1994, The European journal of neuroscience.

[110]  Amy Lee,et al.  Anatomy of adenosine A2A receptors in brain , 2003, Neurology.

[111]  Charles J. Wilson,et al.  Comparison of IPSCs Evoked by Spiny and Fast-Spiking Neurons in the Neostriatum , 2004, The Journal of Neuroscience.

[112]  Peter Redgrave,et al.  Basal Ganglia , 2020, Encyclopedia of Autism Spectrum Disorders.

[113]  L. Agnati Volume transmission revisited , 2000 .

[114]  Istvan Mody,et al.  Distinguishing Between GABAA Receptors Responsible for Tonic and Phasic Conductances , 2001, Neurochemical Research.

[115]  Y. Smith,et al.  Distinct Functional Roles of the Metabotropic Glutamate Receptors 1 and 5 in the Rat Globus Pallidus , 2003, The Journal of Neuroscience.

[116]  Charles J. Wilson,et al.  Chapter II The basal ganglia , 1996 .

[117]  R. Dingledine,et al.  Functional interactions between cannabinoid and metabotropic glutamate receptors in the central nervous system. , 2003, Current opinion in pharmacology.

[118]  P. Somogyi,et al.  Cellular, Subcellular, and Subsynaptic Distribution of AMPA-Type Glutamate Receptor Subunits in the Neostriatum of the Rat , 1997, The Journal of Neuroscience.

[119]  R. Bruton,et al.  Group I mGlu receptor modulation of dopamine release in the rat striatum in vivo. , 1999, European journal of pharmacology.

[120]  Masahiko Watanabe,et al.  Selective scarcity of NMDA receptor channel subunits in the stratum lucidum (mossy fibre‐recipient layer) of the mouse hippocampal CA3 subfield , 1998, The European journal of neuroscience.

[121]  G. E. Alexander,et al.  Functional architecture of basal ganglia circuits: neural substrates of parallel processing , 1990, Trends in Neurosciences.

[122]  W. Yung,et al.  Differential expression of pre- and postsynaptic GABA(B) receptors in rat substantia nigra pars reticulata neurones. , 1998, European journal of pharmacology.

[123]  M. Mayer,et al.  Structure and function of glutamate receptor ion channels. , 2004, Annual review of physiology.

[124]  B. Moghaddam,et al.  Regulation of striatal dopamine release by metabotropic glutamate receptors , 1998, Synapse.

[125]  P. Conn,et al.  Distinct physiological roles of the Gq‐coupled metabotropic glutamate receptors co‐expressed in the same neuronal populations , 2002, Journal of cellular physiology.

[126]  R. Wenthold,et al.  Glutamate Receptors Are Selectively Targeted to Postsynaptic Sites in Neurons , 1997, Neuron.

[127]  Ann Marie Craig,et al.  Activity Regulates the Synaptic Localization of the NMDA Receptor in Hippocampal Neurons , 1997, Neuron.

[128]  E. Kuramoto,et al.  Presynaptic localization of an AMPA‐type glutamate receptor in corticostriatal and thalamostriatal axon terminals , 2004, The European journal of neuroscience.

[129]  M. Pangalos,et al.  GABAB Receptors: A New Paradigm in G Protein Signaling , 2000, Molecular and Cellular Neuroscience.

[130]  Dwight E Bergles,et al.  Glutamate transporters bring competition to the synapse , 2004, Current Opinion in Neurobiology.

[131]  W Wisden,et al.  The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. I. Telencephalon, diencephalon, mesencephalon , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[132]  R. Olsen,et al.  GABAA receptor channels. , 1994, Annual review of neuroscience.

[133]  T W Berger,et al.  Presynaptic modulation by GABAB receptors of glutamatergic excitation and GABAergic inhibition of neostriatal neurons. , 1992, Journal of neurophysiology.

[134]  J. Tepper,et al.  Striatal, pallidal, and pars reticulata evoked inhibition of nigrostriatal dopaminergic neurons is mediated by GABAA receptors in vivo , 1999, Neuroscience.

[135]  K. Rhodes,et al.  Immunohistochemical localization of subtype 4a metabotropic glutamate receptors in the rat and mouse basal ganglia , 1999, The Journal of comparative neurology.

[136]  P. Somogyi,et al.  The γ2 Subunit of the GABAA Receptor is Concentrated in Synaptic Junctions Containing the α1 and β 2 3 Subunits in Hippocampus, Cerebellum and Globus Pallidus , 1996, Neuropharmacology.

[137]  M. Raiteri,et al.  GABA terminal autoreceptors in the pars compacta and in the pars reticulata of the rat substantia nigra are GABAB. , 1990, European journal of pharmacology.

[138]  E A Barnard,et al.  International Union of Pharmacology. XV. Subtypes of gamma-aminobutyric acidA receptors: classification on the basis of subunit structure and receptor function. , 1998, Pharmacological reviews.

[139]  Shigenori Watanabe,et al.  Possible roles of kainate receptors on GABAergic nerve terminals projecting to rat substantia nigra dopaminergic neurons. , 2003, Journal of neurophysiology.

[140]  A. Charara,et al.  Presynaptic kainate receptors in the monkey striatum , 1999, Neuroscience.

[141]  M. Frotscher,et al.  Compartment-Dependent Colocalization of Kir3.2-Containing K+ Channels and GABAB Receptors in Hippocampal Pyramidal Cells , 2006, The Journal of Neuroscience.

[142]  U. Ungerstedt,et al.  N‐methyl‐d‐Aspartic Acid Differentially Regulates Extracellular Dopamine, GABA, and Glutamate Levels in the Dorsolateral Neostriatum of the Halothane‐Anesthetized Rat: An In Vivo Microdialysis Study , 1993, Journal of neurochemistry.

[143]  Y. Smith,et al.  Microcircuitry of the direct and indirect pathways of the basal ganglia. , 1998, Neuroscience.

[144]  M. G. Lacey,et al.  Metabotropic glutamate receptors depress glutamate‐mediated synaptic input to rat midbrain dopamine neurones in vitro , 1998, British journal of pharmacology.

[145]  P. Calabresi,et al.  Activation of Group III Metabotropic Glutamate Receptors Depresses Glutamatergic Transmission at Corticostriatal Synapse , 1997, Neuropharmacology.

[146]  Y. Smith,et al.  Differential Localization of AMPA Glutamate Receptor Subunits in the Two Segments of the Globus Pallidus and the Substantia Nigra Pars Reticulata in the Squirrel Monkey , 1996, The European journal of neuroscience.

[147]  J. Paul Bolam,et al.  The basal ganglia VIII , 2005 .

[148]  Charles J. Wilson,et al.  Surround inhibition among projection neurons is weak or nonexistent in the rat neostriatum. , 1994, Journal of neurophysiology.

[149]  J. Bolam,et al.  Cholinergic synaptic input to different parts of spiny striatonigral neurons in the rat , 1988, The Journal of comparative neurology.

[150]  Y. Jan,et al.  A Trafficking Checkpoint Controls GABAB Receptor Heterodimerization , 2000, Neuron.

[151]  P. Calabresi,et al.  Activation of quisqualate metabotropic receptors reduces glutamate and GABA-mediated synaptic potentials in the rat striatum , 1992, Neuroscience Letters.

[152]  A. Levey,et al.  Localization of neuronal and glial glutamate transporters , 1994, Neuron.

[153]  A. Triller,et al.  Surface trafficking of receptors between synaptic and extrasynaptic membranes: and yet they do move! , 2005, Trends in Neurosciences.

[154]  D. Lovinger,et al.  Metabotropic glutamate receptor-mediated presynaptic depression at corticostriatal synapses involves mGLuR2 or 3. , 1995, Journal of neurophysiology.

[155]  Y. Smith,et al.  Age‐related changes in the expression of axonal and glial group I metabotropic glutamate receptor in the rat substantia nigra pars reticulata , 2004, The Journal of comparative neurology.

[156]  P. Somogyi,et al.  Input‐dependent synaptic targeting of α2‐subunit‐containing GABAA receptors in synapses of hippocampal pyramidal cells of the rat , 2001, The European journal of neuroscience.

[157]  J. Fritschy,et al.  GABAA‐receptor heterogeneity in the adult rat brain: Differential regional and cellular distribution of seven major subunits , 1995, The Journal of comparative neurology.

[158]  G. Sperk,et al.  Distribution of the major γ‐aminobutyric acidA receptor subunits in the basal ganglia and associated limbic brain areas of the adult rat , 2001, The Journal of comparative neurology.

[159]  J. Bolam,et al.  The subcellular localization of GABAB receptor subunits in the rat substantia nigra , 2003, The European journal of neuroscience.

[160]  I. Stanford,et al.  Differential Actions of Serotonin, Mediated by 5-HT1Band 5-HT2C Receptors, on GABA-Mediated Synaptic Input to Rat Substantia Nigra Pars Reticulata Neurons In Vitro , 1996, The Journal of Neuroscience.

[161]  Y. Smith,et al.  Subcellular and subsynaptic localization of group I metabotropic glutamate receptors in the monkey subthalamic nucleus , 2004, The Journal of comparative neurology.

[162]  E. Mengual,et al.  Electron microscopic immunolabeling of transporters and receptors identifies transmitter-specific functional sites envisioned in Cajal's neuron. , 2002, Progress in brain research.

[163]  G. Sperk,et al.  Subunit composition, distribution and function of GABA(A) receptor subtypes. , 2002, Current topics in medicinal chemistry.

[164]  P. Somogyi,et al.  Immunocytochemical Localization of the α1 and β2/3 Subunits of the GABAA Receptor in Relation to Specific GABAergic Synapses in the Dentate Gyrus , 1995 .

[165]  J. Desce,et al.  Dopamine Receptors and Groups I and II mGluRs Cooperate for Long-Term Depression Induction in Rat Prefrontal Cortex through Converging Postsynaptic Activation of MAP Kinases , 1999, The Journal of Neuroscience.

[166]  P. Whiting,et al.  Expression of 10 GABAA receptor subunit messenger RNAs in the motor-related thalamic nuclei and basal ganglia of Macaca mulatta studied with in situ hybridization histochemistry , 1998, Neuroscience.

[167]  Charles J. Wilson,et al.  Fine structure and synaptic connections of the common spiny neuron of the rat neostriatum: A study employing intracellular injection of horseradish peroxidase , 1980 .

[168]  T W Berger,et al.  Depression of glutamatergic and gabaergic synaptic responses in striatal spiny neurons by stimulation of presynaptic GABAB receptors , 1993, Synapse.

[169]  P. Worley,et al.  Dendritic and Axonal Targeting of Type 5 Metabotropic Glutamate Receptor Is Regulated by Homer1 Proteins and Neuronal Excitation , 2000, The Journal of Neuroscience.

[170]  M. Kano,et al.  Ca2+ activity at GABAB receptors constitutively promotes metabotropic glutamate signaling in the absence of GABA. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[171]  P. Somogyi,et al.  Relative densities of synaptic and extrasynaptic GABAA receptors on cerebellar granule cells as determined by a quantitative immunogold method , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[172]  J. Lübke,et al.  Functional Properties of AMPA and NMDA Receptors Expressed in Identified Types of Basal Ganglia Neurons , 1997, The Journal of Neuroscience.

[173]  M. Lacey,et al.  Subpopulations of GABA-mediated synaptic potentials in slices of rat dorsal striatum are differentially modulated by presynaptic GABAB receptors , 1991, Brain Research.

[174]  P. Worley,et al.  Agonist-independent activation of metabotropic glutamate receptors by the intracellular protein Homer , 2001, Nature.

[175]  P. Conn,et al.  Localization and physiological roles of metabotropic glutamate receptors in the direct and indirect pathways of the basal ganglia , 2002, Amino Acids.

[176]  M. Tohyama,et al.  Regional distribution of GABA transporter 1 (GAT1) mRNA in the rat brain: comparison with glutamic acid decarboxylase67 (GAD67) mRNA localization. , 1997, Brain research. Molecular brain research.

[177]  G Bernardi,et al.  Involvement of GABA systems in feedback regulation of glutamate‐and GABA‐mediated synaptic potentials in rat neostriatum. , 1991, The Journal of physiology.

[178]  P. Conn,et al.  Activation of groups I or III metabotropic glutamate receptors inhibits excitatory transmission in the rat subthalamic nucleus , 2001, Neuropharmacology.

[179]  S. Totterdell,et al.  Astroglial plasticity and glutamate function in a chronic mouse model of Parkinson's disease , 2004, Experimental Neurology.

[180]  H. Kita,et al.  Pallidal inputs to subthalamus: Intracellular analysis , 1983, Brain Research.

[181]  A. Levey,et al.  Distribution of Group III mGluRs in Rat Basal Ganglia with Subtype‐Specific Antibodies , 1999, Annals of the New York Academy of Sciences.

[182]  Y. Smith,et al.  GABA(B) receptors in the centromedian/parafascicular thalamic nuclear complex: an ultrastructural analysis of GABA(B)R1 and GABA(B)R2 in the monkey thalamus. , 2006, The Journal of comparative neurology.

[183]  C. Romano,et al.  Functional Metabotropic Glutamate Receptors on Nuclei from Brain and Primary Cultured Striatal Neurons , 2005, Journal of Biological Chemistry.

[184]  G. Lombardi,et al.  Pharmacological characterization of the metabotropic glutamate receptor inhibiting d‐[3H]‐aspartate output in rat striatum , 1993, British journal of pharmacology.

[185]  J. Bolam,et al.  GABAB receptors at glutamatergic synapses in the rat striatum , 2005, Neuroscience.

[186]  K. P. Lehre,et al.  The Number of Glutamate Transporter Subtype Molecules at Glutamatergic Synapses: Chemical and Stereological Quantification in Young Adult Rat Brain , 1998, The Journal of Neuroscience.

[187]  D. Kullmann,et al.  GABA uptake regulates cortical excitability via cell type–specific tonic inhibition , 2003, Nature Neuroscience.

[188]  J. Bolam,et al.  Subcellular and subsynaptic distribution of the NR1 subunit of the NMDA receptor in the neostriatum and globus pallidus of the rat: co‐localization at synapses with the GluR2/3 subunit of the AMPA receptor , 1998, The European journal of neuroscience.

[189]  Manuel Rodriguez,et al.  Response of the GABAergic and dopaminergic mesostriatal projections to the lesion of the contralateral dopaminergic mesostriatal pathway in the rat , 2004, Movement disorders : official journal of the Movement Disorder Society.

[190]  P. Calabresi,et al.  Endogenous GABA mediates presynaptic inhibition of spontaneous and evoked excitatory synaptic potentials in the rat neostriatum , 1990, Neuroscience Letters.

[191]  A. Nieoullon,et al.  Nigrostriatal denervation does not affect glutamate transporter mRNA expression but subsequent levodopa treatment selectively increases GLT1 mRNA and protein expression in the rat striatum , 2001, Journal of neurochemistry.

[192]  B. Sabatini,et al.  State-Dependent Calcium Signaling in Dendritic Spines of Striatal Medium Spiny Neurons , 2004, Neuron.

[193]  D. Surmeier,et al.  Evidence for the preferential localization of Glutamate Receptor-1 subunits of AMPA receptors to the dendritic spines of medium spiny neurons in rat striatum , 1998, Neuroscience.

[194]  Christophe Mulle,et al.  Functional GluR6 Kainate Receptors in the Striatum: Indirect Downregulation of Synaptic Transmission , 2000, The Journal of Neuroscience.

[195]  Thomas Wichmann,et al.  Role of External Pallidal Segment in Primate Parkinsonism: Comparison of the Effects of 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Induced Parkinsonism and Lesions of the External Pallidal Segment , 2004, The Journal of Neuroscience.

[196]  J. Pin,et al.  Pharmacology and functions of metabotropic glutamate receptors. , 1997, Annual review of pharmacology and toxicology.

[197]  O. Ottersen,et al.  Organization of Glutamate Receptors at the Synapse , 1997, The European journal of neuroscience.

[198]  J. Penney,et al.  Localization of metabotropic glutamate receptor 7 mRNA and mGluR7a protein in the rat basal ganglia , 1999, The Journal of comparative neurology.

[199]  R. Shigemoto,et al.  Distinct localization of GABAB receptors relative to synaptic sites in the rat cerebellum and ventrobasal thalamus , 2002, The European journal of neuroscience.

[200]  Y. Smith,et al.  Activation of Metabotropic Glutamate Receptor 5 Has Direct Excitatory Effects and Potentiates NMDA Receptor Currents in Neurons of the Subthalamic Nucleus , 2000, The Journal of Neuroscience.

[201]  P. Somogyi,et al.  Subsynaptic segregation of metabotropic and ionotropic glutamate receptors as revealed by immunogold localization , 1994, Neuroscience.

[202]  G. Bernardi,et al.  The modulation of calcium current by GABA metabotropic receptors in a sub‐population of pallidal neurons , 1999, The European journal of neuroscience.

[203]  Damien Gervasoni,et al.  The Switch of Subthalamic Neurons From an Irregular to a Bursting Pattern Does Not Solely Depend on Their GABAergic Inputs in the Anesthetic-Free Rat , 2002, The Journal of Neuroscience.

[204]  B. Borowsky,et al.  GABA(B) receptors function as a heteromeric assembly of the subunits GABA(B)R1 and GABA(B)R2. , 1998, Nature.

[205]  P. Jeffrey Conn,et al.  Metabotropic glutamate receptors in the basal ganglia motor circuit , 2005, Nature Reviews Neuroscience.

[206]  Y. Smith,et al.  Group I Metabotropic Glutamate Receptors in the Monkey Striatum: Subsynaptic Association with Glutamatergic and Dopaminergic Afferents , 2003, The Journal of Neuroscience.

[207]  M. Quik,et al.  Nicotine and nicotinic receptors; relevance to Parkinson's disease. , 2002, Neurotoxicology.

[208]  A. Malviya,et al.  Calcium signals in the cell nucleus Strasbourg, France, August 20–23, 1998 , 1999, The EMBO journal.

[209]  F. Iasevoli,et al.  The Homer family and the signal transduction system at glutamatergic postsynaptic density: potential role in behavior and pharmacotherapy. , 2003, Psychopharmacology bulletin.

[210]  Boris Barbour,et al.  Nonvesicular release of neurotransmitter , 1993, Neuron.

[211]  J. Weiner,et al.  Functional characterization of kainate receptors in the rat nucleus accumbens core region. , 2002, Journal of neurophysiology.

[212]  J. Bolam,et al.  Selective Innervation of Neostriatal Interneurons by a Subclass of Neuron in the Globus Pallidus of the Rat , 1998, The Journal of Neuroscience.

[213]  Yu Tian Wang,et al.  Direct protein–protein coupling enables cross-talk between dopamine D5 and γ-aminobutyric acid A receptors , 2000, Nature.

[214]  E. Costa,et al.  Glutamate receptor subtypes mediate excitatory synaptic currents of dopamine neurons in midbrain slices , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[215]  D. Raju,et al.  Hetero-oligomerization between GABAA and GABAB Receptors Regulates GABAB Receptor Trafficking* , 2004, Journal of Biological Chemistry.

[216]  P. Mancini,et al.  Freeze-fracture immunogold labeling , 1996, Histochemistry and Cell Biology.

[217]  J. Cano,et al.  In vivo release of dopamine from rat striatum, substantia nigra and prefrontal cortex: differential modulation by baclofen , 1993, British journal of pharmacology.

[218]  R. Shigemoto,et al.  Distribution of metabotropic glutamate receptor mGluR3 in the mouse CNS: differential location relative to pre- and postsynaptic sites , 2001, Neuroscience.

[219]  M. Häusser,et al.  Inhibitory synaptic potentials in guinea‐pig substantia nigra dopamine neurones in vitro. , 1994, The Journal of physiology.

[220]  D. Joel,et al.  The organization of the basal ganglia-thalamocortical circuits: Open interconnected rather than closed segregated , 1994, Neuroscience.

[221]  H. Kita,et al.  Synaptically released GABA activates both pre- and postsynaptic GABA(B) receptors in the rat globus pallidus. , 2005, Journal of neurophysiology.

[222]  J. Seamans,et al.  Cystine/Glutamate Exchange Regulates Metabotropic Glutamate Receptor Presynaptic Inhibition of Excitatory Transmission and Vulnerability to Cocaine Seeking , 2005, The Journal of Neuroscience.

[223]  H. Nakanishi,et al.  Neostriatal evoked inhibition and effects of dopamine on globus pallidal neurons in rat slice preparations , 1985, Brain Research.

[224]  M. Mouroux,et al.  Evidence that the parafascicular projection to the subthalamic nucleus is glutamatergic. , 1993, Neuroreport.

[225]  R. Angus Silver,et al.  GABA Spillover from Single Inhibitory Axons Suppresses Low-Frequency Excitatory Transmission at the Cerebellar Glomerulus , 2000, The Journal of Neuroscience.

[226]  S. Erhardt,et al.  Activation of nigral dopamine neurons by the selective GABAB-receptor antagonist SCH 50911 , 1999, Journal of Neural Transmission.

[227]  F. Ciruela,et al.  Interactions of the C Terminus of Metabotropic Glutamate Receptor Type 1␣ with Rat Brain Proteins: Evidence for a Direct Interaction with Tubulin , 2022 .

[228]  J. Brotchie,et al.  NMDA receptors in the basal ganglia , 2000, Journal of anatomy.

[229]  P. Somogyi,et al.  Differential synaptic localization of two major gamma-aminobutyric acid type A receptor alpha subunits on hippocampal pyramidal cells. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[230]  S. Johnson,et al.  Presynaptic GABAB receptors inhibit synaptic inputs to rat subthalamic neurons , 2001, Neuroscience.

[231]  M. Raiteri,et al.  International Union of Pharmacology. XXXIII. Mammalian gamma-aminobutyric acid(B) receptors: structure and function. , 2002, Pharmacological reviews.

[232]  G. Richerson,et al.  Dynamic equilibrium of neurotransmitter transporters: not just for reuptake anymore. , 2003, Journal of neurophysiology.

[233]  J. Tepper,et al.  Inhibitory control of neostriatal projection neurons by GABAergic interneurons , 1999, Nature Neuroscience.

[234]  L. Borden GABA TRANSPORTER HETEROGENEITY: PHARMACOLOGY AND CELLULAR LOCALIZATION , 1996, Neurochemistry International.

[235]  A. Levey,et al.  Activation of Group II Metabotropic Glutamate Receptors Inhibits Synaptic Excitation of the Substantia Nigra Pars Reticulata , 2000, The Journal of Neuroscience.

[236]  P Jeffrey Conn,et al.  Glutamate Receptors and Parkinson’s Disease , 2003, Drugs & aging.

[237]  M. Gassmann,et al.  Molecular Structure and Physiological Functions of GABAB Receptors , 2004 .

[238]  A. Araque,et al.  Tripartite synapses: glia, the unacknowledged partner , 1999, Trends in Neurosciences.

[239]  J. Glowinski,et al.  Cooperative contributions of cholinergic and NMDA receptors in the presynaptic control of dopamine release from synaptosomes of the rat striatum. , 1996, The Journal of pharmacology and experimental therapeutics.

[240]  M. Scanziani GABA Spillover Activates Postsynaptic GABAB Receptors to Control Rhythmic Hippocampal Activity , 2000, Neuron.

[241]  K. Svoboda,et al.  Principles of Two-Photon Excitation Microscopy and Its Applications to Neuroscience , 2006, Neuron.

[242]  Daniel Choquet,et al.  Synaptic structure and diffusion dynamics of synaptic receptors , 2003, Biology of the cell.

[243]  T. Wichmann,et al.  GABAergic modulation of the activity of globus pallidus neurons in primates: in vivo analysis of the functions of GABA receptors and GABA transporters. , 2005, Journal of neurophysiology.

[244]  A. Charara,et al.  An electron microscope immunocytochemical study of GABAB R2 receptors in the monkey basal ganglia: A comparative analysis with GABAB R1 receptor distribution , 2004, The Journal of comparative neurology.

[245]  Clifford B Saper,et al.  Magic peptides, magic antibodies: Guidelines for appropriate controls for immunohistochemistry , 2003, The Journal of comparative neurology.

[246]  Hong Wang,et al.  Presence of NMDA‐type glutamate receptors in cingulate corticostriatal terminals and their postsynaptic targets , 2000, Synapse.

[247]  R. Shigemoto,et al.  Localization of the GABAB receptor 1a/b subunit relative to glutamatergic synapses in the dorsal cochlear nucleus of the rat , 2004, The Journal of comparative neurology.

[248]  Guillaume Casassus,et al.  Functional characterization of kainate receptors in the mouse nucleus accumbens , 2002, Neuropharmacology.

[249]  A. Parent,et al.  Synaptic relationships between dopaminergic afferents and cortical or thalamic input in the sensorimotor territory of the striatum in monkey , 1994, The Journal of comparative neurology.

[250]  Rachel Blitzblau,et al.  Expression of a Variant Form of the Glutamate Transporter GLT1 in Neuronal Cultures and in Neurons and Astrocytes in the Rat Brain , 2002, The Journal of Neuroscience.

[251]  N. O. Dalby GABA-level increasing and anticonvulsant effects of three different GABA uptake inhibitors , 2000, Neuropharmacology.

[252]  R. Nicoll,et al.  Synaptic kainate receptors , 2000, Current Opinion in Neurobiology.

[253]  L. Meltzer,et al.  Evidence for N-methyl-d-aspartate and AMPA subtypes of the glutamate receptor on substantia nigra dopamine neurons: Possible preferential role for N-methyl-d-aspartate receptors , 1995, Neuroscience.

[254]  J. E. Huettner Kainate receptors and synaptic transmission , 2003, Progress in Neurobiology.

[255]  A. Charara,et al.  Pre- and postsynaptic localization of GABAB receptors in the basal ganglia in monkeys , 1999, Neuroscience.

[256]  R. Fremeau,et al.  Characterization and distribution of the neuronal glutamate transporter EAAC1 in rat brain. , 1996, The American journal of physiology.

[257]  M. Gassmann,et al.  Molecular structure and physiological functions of GABA(B) receptors. , 2004, Physiological reviews.

[258]  K. Rhodes,et al.  Antibodies as Valuable Neuroscience Research Tools versus Reagents of Mass Distraction , 2006, The Journal of Neuroscience.

[259]  D. Plenz,et al.  Action Potential Timing Determines Dendritic Calcium during Striatal Up-States , 2004, The Journal of Neuroscience.

[260]  Charles J. Wilson,et al.  GABAergic microcircuits in the neostriatum , 2004, Trends in Neurosciences.

[261]  A. Charara,et al.  Ionotropic and metabotropic GABA and glutamate receptors in primate basal ganglia , 2001, Journal of Chemical Neuroanatomy.

[262]  A. Burkhalter,et al.  Subcellular localization of GABA(B) receptor subunits in rat visual cortex. , 2001, The Journal of comparative neurology.

[263]  H. Kasai,et al.  Number and Density of AMPA Receptors in Single Synapses in Immature Cerebellum , 2005, The Journal of Neuroscience.

[264]  J. Aceves,et al.  Presynaptic modulation of the release of GABA by GABAA receptors in pars compacta and by GABAB receptors in pars reticulata of the rat substantia nigra. , 1988, European journal of pharmacology.

[265]  J. Zwiller,et al.  Evidence for NMDA/D2 receptor-receptor interactions in the rat striatum. , 1993, Advances in neurology.

[266]  P. Somogyi,et al.  The gamma 2 subunit of the GABAA receptor is concentrated in synaptic junctions containing the alpha 1 and beta 2/3 subunits in hippocampus, cerebellum and globus pallidus. , 1996, Neuropharmacology.

[267]  Y. Smith,et al.  Pre-synaptic kainate receptors in gabaergic and glutamatergic axon terminals in the monkey globus pallidus , 2003, Neuroscience.

[268]  S. Sesack,et al.  Anatomical Substrates for Glutamate‐Dopamine Interactions , 2003 .

[269]  Z. Nusser AMPA amd NMDA receptors: similarities and differences in their synaptic distribution , 2000, Current Opinion in Neurobiology.

[270]  Charles J. Wilson,et al.  The generation of natural firing patterns in neostriatal neurons. , 1993, Progress in brain research.

[271]  J. Storm-Mathisen,et al.  Differential expression of two glial glutamate transporters in the rat brain: quantitative and immunocytochemical observations , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[272]  David Attwell,et al.  Tonic and Spillover Inhibition of Granule Cells Control Information Flow through Cerebellar Cortex , 2002, Neuron.

[273]  A. Parent,et al.  Differential connections of caudate nucleus and putamen in the squirrel monkey (Saimiri sciureus) , 1986, Neuroscience.

[274]  D. Rusakov,et al.  Perisynaptic asymmetry of glia: new insights into glutamate signalling , 2002, Trends in Neurosciences.

[275]  N. Danbolt Glutamate uptake , 2001, Progress in Neurobiology.

[276]  P. Somogyi,et al.  Distribution and synaptic localisation of the metabotropic glutamate receptor 4 (mGluR4) in the rodent CNS , 2002, Neuroscience.

[277]  H. Kita,et al.  Electrical membrane properties of rat subthalamic neurons in an in vitro slice preparation , 1987, Brain Research.

[278]  Y. Smith,et al.  Group I Metabotropic Glutamate Receptors at GABAergic Synapses in Monkeys , 1999, The Journal of Neuroscience.

[279]  F. Mora,et al.  Amphetamine releases GABA in striatum of the freely moving rat: involvement of calcium and high affinity transporter mechanisms , 1998, Neuropharmacology.

[280]  R. Duvoisin,et al.  Alternative Splicing Unmasks Dendritic and Axonal Targeting Signals in Metabotropic Glutamate Receptor 1 , 2002, The Journal of Neuroscience.

[281]  M. Lacey,et al.  Electrophysiological characterization of potent agonists and antagonists at pre‐ and postsynaptic GABAB receptors on neurones in rat brain slices , 1990, British journal of pharmacology.

[282]  R. Robertson,et al.  Further investigations into the pathophysiology of MPTP-induced parkinsonism in the primate: an intracerebral microdialysis study of γ-aminobutyric acid in the lateral segment of the globus pallidus , 1991, Brain Research.

[283]  W. Yung,et al.  Effects of the GABA-uptake inhibitor tiagabine in rat globus pallidus , 2003, Experimental Brain Research.

[284]  B. D. Bennett,et al.  Synaptic input and output of parvalbumin-immunoreactive neurons in the neostriatum of the rat , 1994, Neuroscience.

[285]  JM Tepper,et al.  GABAA receptor-mediated inhibition of rat substantia nigra dopaminergic neurons by pars reticulata projection neurons , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[286]  K. Kultas‐Ilinsky,et al.  Expression of 10 GABA(A) receptor subunit messenger RNAs in the motor-related thalamic nuclei and basal ganglia of Macaca mulatta studied with in situ hybridization histochemistry. , 1998, Neuroscience.

[287]  H. Kita,et al.  Origins of GABAA and GABAB Receptor-Mediated Responses of Globus Pallidus Induced after Stimulation of the Putamen in the Monkey , 2006, The Journal of Neuroscience.

[288]  J. Brotchie,et al.  Metabotropic glutamate receptor agonists inhibit endogenous glutamate release from rat striatal synaptosomes. , 1995, European journal of pharmacology.

[289]  L. Hazrati,et al.  Functional anatomy of the basal ganglia , 1995 .

[290]  W Reichelt,et al.  Glutamate uptake controls expression of a slow postsynaptic current mediated by mGluRs in cerebellar Purkinje cells. , 2002, Journal of neurophysiology.

[291]  H. Kita,et al.  Intracellular study of rat globus pallidus neurons: membrane properties and responses to neostriatal, subthalamic and nigral stimulation , 1991, Brain Research.

[292]  A. Charara,et al.  Differential subcellular and subsynaptic distribution of GABAA and GABAB receptors in the monkey subthalamic nucleus , 2004, Neuroscience.

[293]  S. Sesack,et al.  Anatomical substrates for glutamate-dopamine interactions: evidence for specificity of connections and extrasynaptic actions. , 2003, Annals of the New York Academy of Sciences.

[294]  F. Marshall,et al.  GABAB receptors - the first 7TM heterodimers. , 1999, Trends in pharmacological sciences.

[295]  E. M. Barnes Intracellular trafficking of GABA(A) receptors. , 2000, Life sciences.

[296]  P. Conn,et al.  Group III Metabotropic Glutamate-Receptor-Mediated Modulation of Excitatory Transmission in Rodent Substantia Nigra Pars Compacta Dopamine Neurons , 2005, Journal of Pharmacology and Experimental Therapeutics.

[297]  A. Sergé,et al.  Receptor Activation and Homer Differentially Control the Lateral Mobility of Metabotropic Glutamate Receptor 5 in the Neuronal Membrane , 2002, The Journal of Neuroscience.

[298]  A. Burkhalter,et al.  Subcellular localization of GABAB receptor subunits in rat visual cortex , 2001 .

[299]  O. Ottersen,et al.  Organization of AMPA Receptor Subunits at a Glutamate Synapse: A Quantitative Immunogold Analysis of Hair Cell Synapses in the Rat Organ of Corti , 1996, The Journal of Neuroscience.

[300]  H. Kita,et al.  Role of ionotropic glutamatergic and GABAergic inputs on the firing activity of neurons in the external pallidum in awake monkeys. , 2004, Journal of neurophysiology.

[301]  Y. Smith,et al.  Localization and Functions of Kainate Receptors in the Rat Globus Pallidus , 2005 .

[302]  M. Frotscher,et al.  Subcellular Localization of Metabotropic GABAB Receptor Subunits GABAB1a/b and GABAB2 in the Rat Hippocampus , 2003, The Journal of Neuroscience.

[303]  Y. Smith,et al.  The GABA and substance P input to dopaminergic neurones in the substantia nigra of the rat , 1990, Brain Research.

[304]  J. Bolam,et al.  Synaptic organisation of the basal ganglia , 2000, Journal of anatomy.

[305]  Charles J. Wilson,et al.  Regulation of the timing and pattern of action potential generation in rat subthalamic neurons in vitro by GABA-A IPSPs. , 2002, Journal of neurophysiology.

[306]  I. Módy Aspects of the homeostaic plasticity of GABAA receptor‐mediated inhibition , 2005, The Journal of physiology.