Simulation Techniques for Cosmological Simulations

Modern cosmological observations allow us to study in great detail the evolution and history of the large scale structure hierarchy. The fundamental problem of accurate constraints on the cosmological parameters, within a given cosmological model, requires precise modelling of the observed structure. In this paper we briefly review the current most effective techniques of large scale structure simulations, emphasising both their advantages and shortcomings. Starting with basics of the direct N-body simulations appropriate to modelling cold dark matter evolution, we then discuss the direct-sum technique GRAPE, particle-mesh (PM) and hybrid methods, combining the PM and the tree algorithms. Simulations of baryonic matter in the Universe often use hydrodynamic codes based on both particle methods that discretise mass, and grid-based methods. We briefly describe Eulerian grid methods, and also some variants of Lagrangian smoothed particle hydrodynamics (SPH) methods.

[1]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[2]  Phillip Colella,et al.  Efficient Solution Algorithms for the Riemann Problem for Real Gases , 1985 .

[3]  The chemistry of the early Universe , 1998, astro-ph/9803315.

[4]  L. Hernquist,et al.  Some cautionary remarks about smoothed particle hydrodynamics , 1993 .

[5]  F. Vazza,et al.  Turbulent gas motions in galaxy cluster simulations: the role of smoothed particle hydrodynamics viscosity , 2005 .

[6]  M. Dopita,et al.  Cooling functions for low-density astrophysical plasmas , 1993 .

[7]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[8]  V. Springel,et al.  GADGET: a code for collisionless and gasdynamical cosmological simulations , 2000, astro-ph/0003162.

[9]  L. Moscardini,et al.  Hot and cooled baryons in smoothed particle hydrodynamic simulations of galaxy clusters: physics and numerics , 2005, astro-ph/0512506.

[10]  Claude Brezinski,et al.  Numerical recipes in Fortran (The art of scientific computing) : W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Cambridge Univ. Press, Cambridge, 2nd ed., 1992. 963 pp., US$49.95, ISBN 0-521-43064-X.☆ , 1993 .

[11]  Joseph John Monaghan,et al.  SPH and Riemann Solvers , 1997 .

[12]  Four Measures of the Intracluster Medium Temperature and Their Relation to a Cluster’s Dynamical State , 2000, astro-ph/0004309.

[13]  H. M. P. Couchman,et al.  Galaxy Clusters in Hubble Volume Simulations: Cosmological Constraints from Sky Survey Populations , 2001, astro-ph/0110246.

[14]  Dehnen A Very Fast and Momentum-conserving Tree Code. , 2000, The Astrophysical journal.

[15]  P. Woodward,et al.  The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .

[16]  P. Hut,et al.  Building a better leapfrog , 1995 .

[17]  Y. Zel’dovich Gravitational instability: An Approximate theory for large density perturbations , 1969 .

[18]  P. Roe,et al.  A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics , 1999 .

[19]  Toshikazu Ebisuzaki,et al.  GRAPE-1A--Special-Purpose Computer for N-body Simulation with a Tree Code , 1991 .

[20]  H. Couchman,et al.  Mesh-refined P3M - A fast adaptive N-body algorithm , 1991 .

[21]  The baryon fraction in hydrodynamical simulations of galaxy clusters , 2005, astro-ph/0509024.

[22]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[23]  William H. Press,et al.  Numerical recipes in FORTRAN (2nd ed.): the art of scientific computing , 1992 .

[24]  Chi-Wang Shu Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 1998 .

[25]  Piet Hut,et al.  A hierarchical O(N log N) force-calculation algorithm , 1986, Nature.

[26]  Bernd Einfeld On Godunov-type methods for gas dynamics , 1988 .

[27]  L. Moscardini,et al.  Systematics in the X-ray cluster mass estimators , 2006, astro-ph/0602434.

[28]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[29]  C. D. Kemp,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[30]  Technology of China,et al.  A Hybrid Cosmological Hydrodynamic/N-Body Code Based on a Weighted Essentially Nonoscillatory Scheme , 2004 .

[31]  Jeremiah P. Ostriker,et al.  The Tree-particle-mesh N-body gravity solver , 1999 .

[32]  Hui Li,et al.  CosmoMHD: A Cosmological Magnetohydrodynamics Code , 2006, astro-ph/0611863.

[33]  M. Norman,et al.  ZEUS-2D: A radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. I - The hydrodynamic algorithms and tests. II - The magnetohydrodynamic algorithms and tests , 1992 .

[34]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[35]  Ue-Li Pen,et al.  A High-Resolution Adaptive Moving Mesh Hydrodynamic Algorithm , 1997, astro-ph/9704258.

[36]  Guohong Xu A new parallel N body gravity solver: TPM , 1994, astro-ph/9409021.

[37]  Performance Characteristics of TreePM codes , 2002, astro-ph/0212129.

[38]  Mergers and the Formation of Disk Galaxies in Hierarchically Clustering Universes , 1995, astro-ph/9511001.

[39]  F. Pearce,et al.  Hydra: An Adaptive--Mesh Implementation of PPPM--SPH , 1994 .

[40]  Fermilab,et al.  Cosmological radiative transfer codes comparison project – I. The static density field tests , 2006, astro-ph/0603199.

[41]  M. Steinmetz,et al.  The Santa Barbara Cluster Comparison Project: A Comparison of Cosmological Hydrodynamics Solutions , 1999, astro-ph/9906160.

[42]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[43]  A. Szalay,et al.  The statistics of peaks of Gaussian random fields , 1986 .

[44]  W. Kapferer,et al.  X-ray measured metallicities of the intra-cluster medium: a good measure for the metal mass? , 2007, 0707.1573.

[45]  V. Springel,et al.  Cosmological smoothed particle hydrodynamics simulations: the entropy equation , 2001, astro-ph/0111016.

[46]  Atsushi Kawai,et al.  GRAPE-5: A Special-Purpose Computer for N-Body Simulations , 1999, astro-ph/9909116.

[47]  J. Owen,et al.  Adaptive Smoothed Particle Hydrodynamics: Methodology. II. , 1995, astro-ph/9512078.

[48]  S. Borgani,et al.  The Chemical Enrichment of the ICM from Hydrodynamical Simulations , 2008, 0801.1062.

[49]  Edmund Bertschinger COSMICS: Cosmological Initial Conditions and Microwave Anisotropy Codes , 1995 .

[50]  J. Monaghan,et al.  Fundamental differences between SPH and grid methods , 2006, astro-ph/0610051.

[51]  Steven C. Chapra,et al.  Numerical Methods for Engineers: With Programming and Software Applications , 1997 .

[52]  L. Moscardini,et al.  Mismatch between X-Ray and Emission-weighted Temperatures in Galaxy Clusters: Cosmological Implications , 2004, astro-ph/0409650.

[53]  V. Springel,et al.  Thermal conduction in cosmological SPH simulations , 2004, astro-ph/0401456.

[54]  William H. Press,et al.  Numerical Recipes in FORTRAN - The Art of Scientific Computing, 2nd Edition , 1987 .

[55]  V. Springel,et al.  Cosmological smoothed particle hydrodynamics simulations: a hybrid multiphase model for star formation , 2002, astro-ph/0206393.

[56]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[57]  S. White,et al.  Simulations of dissipative galaxy formation in hierarchically clustering universes – I: Tests of the code , 1993 .

[58]  Volker Springel,et al.  Cosmological SPH simulations: The entropy equation , 2001 .

[59]  Gabriella Puppo,et al.  Compact Central WENO Schemes for Multidimensional Conservation Laws , 1999, SIAM J. Sci. Comput..

[60]  Centro internazionale matematico estivo. Session,et al.  Advanced Numerical Approximation of Nonlinear Hyperbolic Equations , 1998 .

[61]  K. Dolag,et al.  Non-Thermal Processes in Cosmological Simulations , 2008, 0801.1048.

[62]  G. Efstathiou,et al.  Numerical techniques for large cosmological N-body simulations , 1985 .

[63]  L. Moscardini,et al.  Comparing the temperatures of galaxy clusters from hydrodynamical N-body simulations to Chandra and XMM-Newton observations , 2004, astro-ph/0404425.

[64]  S. White,et al.  The inner structure of ΛCDM haloes – I. A numerical convergence study , 2002, astro-ph/0201544.

[65]  K. Dolag,et al.  Metal and molecule cooling in simulations of structure formation , 2007, 0704.2182.

[66]  J. Silk,et al.  Cosmology and large scale structure , 1996 .

[67]  Jeremiah P. Ostriker,et al.  A Cosmological Hydrodynamic Code Based on the Total Variation Diminishing Scheme , 1993 .

[68]  J. Monaghan,et al.  Shock simulation by the particle method SPH , 1983 .

[69]  The Astrophysical Journal, submitted Preprint typeset using L ATEX style emulateapj v. 6/22/04 EFFECTS OF COOLING AND STAR FORMATION ON THE BARYON FRACTIONS IN CLUSTERS , 2005 .

[70]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[71]  P. Madau,et al.  Radiative Transfer in a Clumpy Universe. II. The Ultraviolet Extragalactic Background , 1995, astro-ph/9509093.

[72]  Steven C. Chapra,et al.  Numerical Methods for Engineers , 1986 .

[73]  Toshikazu Ebisuzaki,et al.  A Special-Purpose Computer for N-Body Simulations:GRAPE-2A (GRAPE) , 1993 .

[74]  L. Hernquist,et al.  TREESPH: A Unification of SPH with the Hierarchical Tree Method , 1989 .

[75]  D. Weinberg,et al.  Cosmological Simulations with TreeSPH , 1995, astro-ph/9509107.

[76]  V. Springel,et al.  A unified model for AGN feedback in cosmological simulations of structure formation , 2007, 0705.2238.

[77]  Junichiro Makino,et al.  Treecode with a Special-Purpose Processor , 1991 .

[78]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[79]  Simulating Chandra observations of galaxy clusters , 2003, astro-ph/0310844.

[80]  R. Cen A hydrodynamic approach to cosmology - Methodology , 1992 .

[81]  D. Balsara von Neumann stability analysis of smoothed particle hydrodynamics—suggestions for optimal algorithms , 1995 .

[82]  P. Lax,et al.  On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .

[83]  The structure and dynamical evolution of dark matter haloes , 1996, astro-ph/9603132.

[84]  J. Monaghan,et al.  A Switch to Reduce SPH Viscosity , 1997 .

[85]  Lars Hernquist,et al.  Comparing AMR and SPH Cosmological Simulations. I. Dark Matter and Adiabatic Simulations , 2003, astro-ph/0312651.

[86]  A. Klypin,et al.  Adaptive Refinement Tree: A New High-Resolution N-Body Code for Cosmological Simulations , 1997, astro-ph/9701195.

[87]  A. Evrard Beyond N-body: 3D cosmological gas dynamics , 1988 .

[88]  Richard Courant,et al.  Supersonic Flow And Shock Waves , 1948 .

[89]  Shengtai Li An HLLC Riemann solver for magneto-hydrodynamics , 2005 .

[90]  P. Roe,et al.  On Godunov-type methods near low densities , 1991 .

[91]  Matthias Steinmetz Grapesph: cosmological smoothed particle hydrodynamics simulations with the special-purpose hardware GRAPE , 1996 .

[92]  COSMOS: A Hybrid N-Body/Hydrodynamics Code for Cosmological Problems , 1999, astro-ph/9912339.

[93]  M. L. Norman,et al.  Modeling primordial gas in numerical cosmology , 1996, astro-ph/9608040.

[94]  B. Fryxell,et al.  FLASH: An Adaptive Mesh Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes , 2000 .

[95]  P. Peebles,et al.  The Large-Scale Structure of the Universe , 1980 .

[96]  Felix Stoehr,et al.  Dark matter annihilation in the halo of the Milky Way , 2003, astro-ph/0307026.

[97]  M. White,et al.  Hydrodynamic Simulations of the Sunyaev-Zeldovich Effect(s) , 2000, astro-ph/0008133.

[98]  Jun Makino,et al.  Performance and accuracy of a GRAPE‐3 system for collisionless N‐body simulations , 1998 .

[99]  A. Evrard,et al.  A comparison of cosmological hydrodynamic codes , 1994, astro-ph/9404014.

[100]  L. Moscardini,et al.  Sunyaev–Zel'dovich profiles and scaling relations: modelling effects and observational biases , 2007, 0704.2535.

[101]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[102]  J. Bagla TreePM: A code for cosmological N-body simulations , 1999, astro-ph/9911025.

[103]  Jeremiah P. Ostriker,et al.  A piecewise parabolic method for cosmological hydrodynamics , 1995 .

[104]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[105]  Thermal Conduction in Simulated Galaxy Clusters , 2004, astro-ph/0401470.