A heuristic hierarchical clustering based on multiple similarity measurements

Similarity is the core problem of clustering. Clustering algorithms that are based on a certain, fixed type of similarity are not sufficient to explore complicated structures. In this paper, a constructing method for multiple similarity is proposed to deal with complicated structures of data sets. Multiple similarity derives from the local modification of the initial similarity, based on the feedback information of elementary clusters. Combined with the proposed algorithm, the repeated modifications of local similarity measurement generate a hierarchical clustering result. Some synthetic and real data sets are employed to exhibit the superiority of the new clustering algorithm.

[1]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[2]  Paul Scheunders,et al.  A comparison of clustering algorithms applied to color image quantization , 1997, Pattern Recognit. Lett..

[3]  Zhenguo Li,et al.  Noise Robust Spectral Clustering , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[4]  Yee Leung,et al.  Clustering by Scale-Space Filtering , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Zongben Xu,et al.  Structure Identification-Based Clustering According to Density Consistency , 2011 .

[6]  Zongben Xu,et al.  Dissimilarity based on direction information and its application , 2011, 2011 4th International Congress on Image and Signal Processing.

[7]  Miguel Á. Carreira-Perpiñán,et al.  Fast nonparametric clustering with Gaussian blurring mean-shift , 2006, ICML.

[8]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[9]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Pietro Perona,et al.  Self-Tuning Spectral Clustering , 2004, NIPS.

[11]  Larry D. Hostetler,et al.  The estimation of the gradient of a density function, with applications in pattern recognition , 1975, IEEE Trans. Inf. Theory.

[12]  Hassan Abolhassani,et al.  Harmony K-means algorithm for document clustering , 2009, Data Mining and Knowledge Discovery.

[13]  Christopher J. Merz,et al.  UCI Repository of Machine Learning Databases , 1996 .

[14]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[15]  Nello Cristianini,et al.  Learning the Kernel Matrix with Semidefinite Programming , 2002, J. Mach. Learn. Res..

[16]  Yizong Cheng,et al.  Mean Shift, Mode Seeking, and Clustering , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Francisco F. Rivera,et al.  Image segmentation based on merging of sub-optimal segmentations , 2006, Pattern Recognit. Lett..

[18]  Mohamed A. Ismail,et al.  A distance-relatedness dynamic model for clustering high dimensional data of arbitrary shapes and densities , 2009, Pattern Recognit..

[19]  Gunnar Rätsch,et al.  A General and Efficient Multiple Kernel Learning Algorithm , 2005, NIPS.

[20]  Joydeep Ghosh,et al.  Cluster Ensembles --- A Knowledge Reuse Framework for Combining Multiple Partitions , 2002, J. Mach. Learn. Res..

[21]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[22]  Vipin Kumar,et al.  Chameleon: Hierarchical Clustering Using Dynamic Modeling , 1999, Computer.

[23]  Jayanta Mukherjee MRF clustering for segmentation of color images , 2002, Pattern Recognit. Lett..