Distinguishing between model- and data-driven inferences for high reliability statistical predictions

Estimating the tails of probability distributions plays a key role in complex engineering systems where the goal is characterization of low probability, high consequence events. When data are collected using physical experimentation, statistical distributional assumptions are often used to extrapolate tail behavior to assess reliability, introducing risk due to extrapolation from an unvalidated (statistical) model. Existing tools to evaluate statistical model fit, such as probability plots and goodness of fit tests, fail to communicate the risk associated with this extrapolation. In this work, we develop a new statistical model validation metric and relate this metric to engineering-driven model validation metrics. The metric measures how consistent the parametric tail estimates are with a more flexible model that makes weaker assumptions about the distribution tails. An extreme-value based generalized Pareto distribution is used for the more flexible model. Models are updated using a Bayesian inference procedure that defaults to reasonably conservative inferences when data are sparse. Properties of the estimation procedure are evaluated in statistical simulation, and the effectiveness of the proposed metrics relative to the standard-of-practice statistical metrics is illustrated using a pedagogical example related to a real, but proprietary, engineering example.

[1]  Adam Loy,et al.  Variations of Q–Q Plots: The Power of Our Eyes! , 2015, 1503.02098.

[2]  Jon C. Helton,et al.  Quantification of margins and uncertainties: Conceptual and computational basis , 2011, Reliab. Eng. Syst. Saf..

[3]  William Q. Meeker,et al.  Pitfalls and Practical Considerations in Product Life Analysis--Part I: Basic Concepts and Dangers of Extrapolation , 1982 .

[4]  Thomas Mathew,et al.  Statistical Tolerance Regions: Theory, Applications, and Computation , 2009 .

[5]  L. Haan,et al.  Extreme value theory : an introduction , 2006 .

[6]  Dongjin Lee,et al.  A nonparametric Bayesian network approach to assessing system reliability at early design stages , 2018, Reliab. Eng. Syst. Saf..

[7]  V. Kreinovich,et al.  Imprecise probabilities in engineering analyses , 2013 .

[8]  M. Ivette Gomes,et al.  Extreme Value Theory and Statistics of Univariate Extremes: A Review , 2015 .

[9]  Alan D. Hutson,et al.  Calculating nonparametric confidence intervals for quantiles using fractional order statistics , 1999 .

[10]  G. Schuëller,et al.  The use of kernel densities and confidence intervals to cope with insufficient data in validation experiments , 2008 .

[11]  W. Oberkampf,et al.  Model validation and predictive capability for the thermal challenge problem , 2008 .

[12]  Lin Sun,et al.  Separation of aleatory and epistemic uncertainty in probabilistic model validation , 2016, Reliab. Eng. Syst. Saf..

[13]  Mike Pearson,et al.  Visualizing Uncertainty About the Future , 2022 .

[14]  Guijie Li,et al.  An integrated QMU approach to structural reliability assessment based on evidence theory and kriging model with adaptive sampling , 2018, Reliab. Eng. Syst. Saf..

[15]  Barry L. Nelson,et al.  Advanced tutorial: Input uncertainty quantification , 2014, Proceedings of the Winter Simulation Conference 2014.

[16]  Jon C. Helton,et al.  Ideas underlying the Quantification of Margins and Uncertainties , 2011, Reliab. Eng. Syst. Saf..

[17]  Raphael T. Haftka,et al.  Multiple tail median approach for high reliability estimation , 2010 .

[18]  James R. Wilson,et al.  Accounting for Parameter Uncertainty in Simulation Input Modeling , 2003 .

[19]  William Q. Meeker,et al.  More Pitfalls of Accelerated Tests , 2013 .

[20]  Ramesh Rebba,et al.  Computational methods for model reliability assessment , 2008, Reliab. Eng. Syst. Saf..

[21]  S. S. Wilks Determination of Sample Sizes for Setting Tolerance Limits , 1941 .

[22]  Sharon L. Lohr,et al.  Sampling: Design and Analysis , 1999 .

[23]  J. Pickands Statistical Inference Using Extreme Order Statistics , 1975 .

[24]  A. Gelman Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper) , 2004 .

[25]  Ning Wang,et al.  A New Interval Area Metric for Model Validation With Limited Experimental Data , 2018 .

[26]  Richard A. Johnson,et al.  A new family of power transformations to improve normality or symmetry , 2000 .

[27]  M. Stephens EDF Statistics for Goodness of Fit and Some Comparisons , 1974 .

[28]  Steve Su,et al.  Confidence intervals for quantiles using generalized lambda distributions , 2009, Comput. Stat. Data Anal..

[29]  R. Hughey,et al.  A survey and comparison of methods for estimating extreme right tail-area quantiles , 1991 .

[30]  J. Fox,et al.  Applied Regression Analysis and Generalized Linear Models , 2008 .

[31]  Justin T. Newcomer A new approach to quantification of margins and uncertainties for physical simulation data. , 2012 .

[32]  Matthew F. Barone,et al.  Measures of agreement between computation and experiment: Validation metrics , 2004, J. Comput. Phys..

[33]  B. Lindsay,et al.  Model Assessment Tools for a Model False World , 2009, 1010.0304.

[34]  Stéphane Girard,et al.  A Goodness-of-fit Test for the Distribution Tail , 2007 .

[35]  Jon Wakefield,et al.  Bayesian and Frequentist Regression Methods , 2013 .

[36]  L. Wasserman,et al.  Practical Bayesian Density Estimation Using Mixtures of Normals , 1997 .

[37]  Nathaniel Schenker,et al.  Qualms about Bootstrap Confidence Intervals , 1985 .

[38]  Thomas Mathew,et al.  Improved nonparametric tolerance intervals based on interpolated and extrapolated order statistics† , 2014 .

[39]  Timothy C. Wallstrom,et al.  Quantification of margins and uncertainties: A probabilistic framework , 2011, Reliab. Eng. Syst. Saf..

[40]  William Q. Meeker,et al.  Reliability: The Other Dimension of Quality , 2004 .

[41]  James H. Lambert,et al.  When and How Can You Specify a Probability Distribution When You Don't Know Much? II , 1999 .

[42]  Ali Mosleh Hidden sources of uncertainty: Judgment in the collection and analysis of data , 1986 .

[43]  S. Coles,et al.  An Introduction to Statistical Modeling of Extreme Values , 2001 .

[44]  Vicente J. Romero,et al.  A comparison of methods for representing sparsely sampled random quantities. , 2013 .

[45]  Jon C. Helton,et al.  An exploration of alternative approaches to the representation of uncertainty in model predictions , 2003, Reliab. Eng. Syst. Saf..

[46]  Michael J. Longo,et al.  Estimation of probability tails based on generalized extreme value distributions , 1988 .

[47]  Thomas L. Paez,et al.  A Robust Approach to Quantification of Margin and Uncertainty. , 2013 .

[48]  G. D. Taylor,et al.  Process capability analysis—a robustness study , 1993 .

[49]  Luisa T. Fernholz,et al.  Content-Corrected Tolerance Limits Based on the Bootstrap , 2001, Technometrics.