Modeling thermoelectric transport in organic materials.

Thermoelectric energy converters can directly convert heat to electricity using semiconducting materials via the Seebeck effect and electricity to heat via the Peltier effect. Their efficiency depends on the dimensionless thermoelectric figure of merit of the material, which is defined as zT = S(2)σT/κ with S, σ, κ, and T being the Seebeck coefficient, electrical conductivity, thermal conductivity, and absolute temperature respectively. Organic materials for thermoelectric applications have attracted great attention. In this review, we present our recent progress made in developing theories and computational schemes to predict the thermoelectric figure of merit at the first-principles level. The methods have been applied to model thermoelectric transport in closely-packed molecular crystals and one-dimensional conducting polymer chains. The physical insight gained in these studies will help in the design of efficient organic thermoelectric materials.

[1]  Molecular-dynamics calculation of the thermal conductivity of vitreous silica , 1999, cond-mat/9903033.

[2]  G. J. Snyder,et al.  Thermoelectric efficiency and compatibility. , 2003, Physical review letters.

[3]  X. Crispin,et al.  Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). , 2011, Nature materials.

[4]  Jihui Yang,et al.  Evaluation of Half‐Heusler Compounds as Thermoelectric Materials Based on the Calculated Electrical Transport Properties , 2008 .

[5]  G. Heilmeier,et al.  Charge Transport in Copper Phthalocyanine Single Crystals , 1963 .

[6]  Dirk Reith,et al.  Cause and Effect Reversed in Non-Equilibrium Molecular Dynamics: An Easy Route to Transport Coefficients , 1999 .

[7]  Karl Leo,et al.  Realization of organic pn-homojunction using a novel n-type doping technique , 2004, SPIE Photonics Europe.

[8]  Stefano de Gironcoli,et al.  Phonons and related crystal properties from density-functional perturbation theory , 2000, cond-mat/0012092.

[9]  C. Adachi,et al.  Improved thermoelectric performance of organic thin-film elements utilizing a bilayer structure of pentacene and 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) , 2010 .

[10]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[11]  T. Ikeshoji,et al.  Non-equilibrium molecular dynamics calculation of heat conduction in liquid and through liquid-gas interface , 1994 .

[12]  Robert A Norwood,et al.  CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES 3202 Controlled doping of phthalocyanine layers by cosublimation with acceptor molecules: A systematic Seebeck and conductivity study , 1998 .

[13]  I. Storbeck,et al.  Die elektrischen und thermoelektrischen Eigenschaften von Phthalocyaninen , 2004, Naturwissenschaften.

[14]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[15]  K. Pernstich,et al.  Field-effect-modulated Seebeck coefficient in organic semiconductors. , 2008, Nature materials.

[16]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[17]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[18]  T. Palstra,et al.  Low-temperature structure of rubrene single crystals grown by vapor transport. , 2006, Acta crystallographica. Section B, Structural science.

[19]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[20]  F. Müller-Plathe A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity , 1997 .

[21]  Michael E. Gershenson,et al.  Colloquium : Electronic transport in single-crystal organic transistors , 2006 .

[22]  William L. Jorgensen,et al.  Optimized intermolecular potential functions for liquid hydrocarbons , 1984 .

[23]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[24]  Zhigang Shuai,et al.  First-Principles Predictions of Thermoelectric Figure of Merit for Organic Materials: Deformation Potential Approximation. , 2012, Journal of chemical theory and computation.

[25]  J A Rogers,et al.  Intrinsic charge transport on the surface of organic semiconductors. , 2004, Physical review letters.

[26]  J. Bardeen,et al.  Deformation Potentials and Mobilities in Non-Polar Crystals , 1950 .

[27]  Jorge O. Sofo,et al.  Transport coefficients from first-principles calculations , 2003 .

[28]  K. Jordan,et al.  Molecular dynamics simulations of the thermal conductivity of methane hydrate. , 2008, Journal of Physical Chemistry B.

[29]  B. Kippelen,et al.  Thermal transport properties of thin films of small molecule organic semiconductors , 2005 .

[30]  Oana D. Jurchescu,et al.  Effect of impurities on the mobility of single crystal pentacene , 2004, cond-mat/0404130.

[31]  Gang Chen,et al.  Bulk nanostructured thermoelectric materials: current research and future prospects , 2009 .

[32]  J. Shaw,et al.  Heat Capacities of Tetracene and Pentacene , 2008 .

[33]  Mario Leclerc,et al.  Conducting polymers: Efficient thermoelectric materials , 2011 .

[34]  R. Jones,et al.  Towards more accurate molecular dynamics calculation of thermal conductivity: Case study of GaN bulk crystals , 2009, 1206.5445.

[35]  B. Nag,et al.  Electron transport in compound semiconductors , 1980 .

[36]  J. Brédas,et al.  Theoretical characterization of titanyl phthalocyanine as a p-type organic semiconductor: short intermolecular pi-pi interactions yield large electronic couplings and hole transport bandwidths. , 2008, The Journal of chemical physics.

[37]  Liqiang Li,et al.  An Ultra Closely π‐Stacked Organic Semiconductor for High Performance Field‐Effect Transistors , 2007 .

[38]  K. Schotte The thermoelectric properties of the small polaron , 1966 .

[39]  L. Tang,et al.  The role of acoustic phonon scattering in charge transport in organic semiconductors: a first-principles deformation-potential study , 2009 .

[40]  Sebastian Volz,et al.  Molecular-dynamics simulation of thermal conductivity of silicon crystals , 2000 .

[41]  Mengqiu Long,et al.  First-principles prediction of charge mobility in carbon and organic nanomaterials. , 2012, Nanoscale.

[42]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[43]  Julian Tirado-Rives,et al.  Potential energy functions for atomic-level simulations of water and organic and biomolecular systems. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Tadeusz Paszkiewicz,et al.  Physics of Phonons , 1987 .

[45]  George S. Nolas,et al.  Thermoelectrics: Basic Principles and New Materials Developments , 2001 .

[46]  S. Louie,et al.  Electron-phonon interaction using Wannier functions , 2007 .

[47]  R. W. Ure,et al.  Calculation of Efficiency of Thermoelectric Devices , 1960 .

[48]  David J. Singh,et al.  BoltzTraP. A code for calculating band-structure dependent quantities , 2006, Comput. Phys. Commun..

[49]  William A. Goddard,et al.  Thermal conductivity of diamond and related materials from molecular dynamics simulations , 2000 .

[50]  M. Schaer,et al.  Thermopower measurements on pentacene transistors , 2006, cond-mat/0607375.

[51]  R. Penner,et al.  Enhanced thermoelectric metrics in ultra-long electrodeposited PEDOT nanowires. , 2011, Nano letters.

[52]  G. Profeta,et al.  Intercalant and intermolecular phonon assisted superconductivity in K-doped picene. , 2011, Physical review letters.

[53]  D. Gundlach,et al.  Arbitrary Density of States in an Organic Thin-Film Field-Effect Transistor Model and Application to Pentacene Devices , 2007, IEEE Transactions on Electron Devices.

[54]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[55]  Mengqiu Long,et al.  First-principles investigation of organic semiconductors for thermoelectric applications. , 2009, The Journal of chemical physics.

[56]  F. Bechstedt,et al.  Theory of charge transport in organic crystals: Beyond Holstein's small-polaron model , 2009 .

[57]  Mengqiu Long,et al.  Anisotropic Thermal Transport in Organic Molecular Crystals from Nonequilibrium Molecular Dynamics Simulations , 2011 .

[58]  M. Dresselhaus,et al.  New Directions for Low‐Dimensional Thermoelectric Materials , 2007 .

[59]  Lin-Wang Wang,et al.  Charge carrier motion in disordered conjugated polymers: a multiscale Ab initio study. , 2009, Nano letters.

[60]  G. Madsen,et al.  Automated search for new thermoelectric materials: the case of LiZnSb. , 2006, Journal of the American Chemical Society.

[61]  Y. Miyazaki,et al.  Fabrication of iodine-doped pentacene thin films for organic thermoelectric devices , 2011 .

[62]  Zhigang Shuai,et al.  Evaluation of Charge Mobility in Organic Materials: From Localized to Delocalized Descriptions at a First‐Principles Level , 2011, Advanced materials.

[63]  Lin-Wang Wang,et al.  Charge patching method for electronic structure of organic systems. , 2008, The Journal of chemical physics.

[64]  S. Phillpot,et al.  Comparison of atomic-level simulation methods for computing thermal conductivity , 2002 .

[65]  M. Dresselhaus,et al.  Perspectives on thermoelectrics: from fundamentals to device applications , 2012 .

[66]  Ronggui Yang,et al.  Thermoelectric Properties of Molecular Nanowires , 2011 .

[67]  Martin Huth,et al.  Determination of the crystal structure of substrate-induced pentacene polymorphs in fiber structured thin films. , 2007, Journal of the American Chemical Society.