Natural convective boundary-layer flow of a nanofluid past a vertical plate

The natural convective boundary-layer flow of a nanofluid past a vertical plate is studied analytically. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. A similarity solution is presented. This solution depends on a Lewis number Le, a buoyancy-ratio number Nr, a Brownian motion number Nb, and a thermophoresis number Nt. For various values of Pr and Le, the variation of the reduced Nusselt number with Nr, Nb and Nt is expressed by correlation formulas. It was found that the reduced Nusselt number is a decreasing function of each of Nr, Nb and Nt.