Construction of a new functional platform by grafting poly(4-vinylpyridine) in multi-walled carbon nanotubes for complexing copper ions aiming the amperometric detection of l-cysteine

[1]  R. Linnell Notes- Dissociation Constants of 2-Substituted Pyridines , 1960 .

[2]  Ralph G. Pearson,et al.  HARD AND SOFT ACIDS AND BASES , 1963 .

[3]  Peter Goodhew,et al.  Electron Microscopy & Analysis , 1975 .

[4]  Z. Galus Fundamentals of electrochemical analysis , 1976 .

[5]  E. Laviron General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems , 1979 .

[6]  Allen J. Bard,et al.  Electrochemical Methods: Fundamentals and Applications , 1980 .

[7]  Richard P. Baldwin,et al.  Constant-potential amperometric detection of underivatized amino acids and peptides at a copper electrode , 1991 .

[8]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[9]  W. Dröge,et al.  Modulation of lymphocyte functions and immune responses by cysteine and cysteine derivatives. , 1991, The American journal of medicine.

[10]  W. Dröge,et al.  HIV-induced cysteine deficiency and T-cell dysfunction--a rationale for treatment with N-acetylcysteine. , 1992, Immunology today.

[11]  M. Hitchman,et al.  The electrochemistry of l-cystine and l-cysteine: Part 1: Thermodynamic and kinetic studies , 1994 .

[12]  P. Ajayan Nanotubes from Carbon. , 1999, Chemical reviews.

[13]  T. Kaliyappan,et al.  CO-ORDINATION POLYMERS , 2000 .

[14]  T. Inoue,et al.  Electrochemical detection of thiols with a coenzyme pyrroloquinoline quinone modified electrode. , 2000, Analytical chemistry.

[15]  L. Wilkens,et al.  Case‐control study of plasma folate, homocysteine, vitamin B12, and cysteine as markers of cervical dysplasia , 2000, Cancer.

[16]  V. Rao,et al.  Effect of PTSA on the electrical conductivity of I2 doped poly-4-vinyl pyridine (P4VP) , 2000 .

[17]  M. C. Liu,et al.  Blood glutathione decreases in chronic diseases. , 2000, The Journal of laboratory and clinical medicine.

[18]  S. Shahrokhian,et al.  Lead phthalocyanine as a selective carrier for preparation of a cysteine-selective electrode. , 2001, Analytical chemistry.

[19]  Andreas Hirsch,et al.  Sidewall Functionalization of Carbon Nanotubes. , 2001, Angewandte Chemie.

[20]  D. Tryk,et al.  Voltammetric determination of L-cysteine at conductive diamond electrodes. , 2001, Analytical chemistry.

[21]  Hongjie Dai,et al.  Carbon nanotubes: synthesis, integration, and properties. , 2002, Accounts of chemical research.

[22]  James Davis,et al.  The determination of disulphide species within physiological fluids , 2002 .

[23]  A. Huczko Synthesis of aligned carbon nanotubes , 2002 .

[24]  Francisco Pompeo,et al.  Water Solubilization of Single-Walled Carbon Nanotubes by Functionalization with Glucosamine , 2002 .

[25]  Hongjie Dai,et al.  Carbon nanotubes: opportunities and challenges , 2002 .

[26]  A. Bond,et al.  Electrochemical oxidation of l-cysteine mediated by a fullerene-C60-modified carbon electrode , 2003 .

[27]  I. Molnár-Perl Quantitation of amino acids and amines in the same matrix by high-performance liquid chromatography, either simultaneously or separately. , 2003, Journal of chromatography. A.

[28]  T. Nyokong,et al.  Self‐Assembled Monolayers of Cobalt and Iron Phthalocyanine Complexes on Gold Electrodes: Comparative Surface Electrochemistry and Electrocatalytic Interaction with Thiols and Thiocyanate , 2003 .

[29]  Daniel E. Resasco,et al.  Functionalization of Single-Walled Carbon Nanotubes with Polystyrene via Grafting to and Grafting from Methods , 2004 .

[30]  A. Pires,et al.  Poly (4-vinylpyridine)/cupric salt complexes: spectroscopic and thermal properties , 2004 .

[31]  D. Resasco,et al.  Grafting of Poly(4-vinylpyridine) to Single-Walled Carbon Nanotubes and Assembly of Multilayer Films , 2004 .

[32]  Stanislaus S. Wong,et al.  Covalent Surface Chemistry of Single‐Walled Carbon Nanotubes , 2005 .

[33]  C. Belle,et al.  Sulfur ligation in copper enzymes and models. , 2005, Journal of inorganic biochemistry.

[34]  M. F. Teixeira,et al.  Sensor for cysteine based on oxovanadium(IV) complex of Salen modified carbon paste electrode , 2005 .

[35]  K. Balasubramanian,et al.  Chemically functionalized carbon nanotubes. , 2005, Small.

[36]  Grégoire Herzog,et al.  Electrochemical strategies for the label-free detection of amino acids, peptides and proteins. , 2007, The Analyst.

[37]  G. Rivas,et al.  Dispersion of multi-wall carbon nanotubes in polyethylenimine: A new alternative for preparing electrochemical sensors , 2007 .

[38]  A. Abbaspour,et al.  Electrocatalytic oxidation of l-cysteine with a stable copper–cobalt hexacyanoferrate electrochemically modified carbon paste electrode , 2008 .

[39]  W. Tolman,et al.  Biologically inspired oxidation catalysis , 2008, Nature.

[40]  S. Yao,et al.  Electrochemical detection of l-cysteine using a boron-doped carbon nanotube-modified electrode , 2009 .

[41]  J. Hacaloglu,et al.  Thermal degradation of poly(vinylpyridine)s , 2009 .

[42]  A. Moosavi-Movahedi,et al.  Fine steps of electrocatalytic oxidation and sensitive detection of some amino acids on copper nanoparticles. , 2009, Analytical biochemistry.

[43]  K. Asadpour‐Zeynali,et al.  Sensing L-cysteine in urine using a pencil graphite electrode modified with a copper hexacyanoferrate nanostructure , 2010 .

[44]  N. Durán,et al.  The effects of dimensionality on electrochemical sensors based on carbon nanotubes and metallic nanowires. , 2010, Journal of nanoscience and nanotechnology.

[45]  Lin Li,et al.  POLYMER NANOCOMPOSITES BASED ON FUNCTIONALIZED CARBON NANOTUBES , 2010 .

[46]  E. Borowiak‐Palen,et al.  Oxidation and reduction of multiwalled carbon nanotubes — preparation and characterization , 2010 .