Optogenetic Stimulation for Restoring Vision to Patients Suffering From Retinal Degenerative Diseases: Current Strategies and Future Directions

Optogenetic strategies for vision restoration involve photosensitizing surviving retinal neurons following retinal degeneration, using emerging optogenetic techniques. This approach opens the door to a minimally-invasive retinal vision restoration approach. Moreover, light stimulation has the potential to offer better spatial and temporal resolution than conventional retinal electrical prosthetics. Although proof-of-concept studies in animal models have demonstrated the possibility of restoring vision using optogenetic techniques, and initial clinical trials are underway, there are still hurdles to pass before such an approach restores naturalistic vision in humans. One limitation is the development of light stimulation devices to activate optogenetic channels in the retina. Here we review recent progress in the design and implementation of optogenetic stimulation devices and outline the corresponding technological challenges. Finally, while most work to date has focused on providing therapy to patients suffering from retinitis pigmentosa, we provide additional insights into strategies for applying optogenetic vision restoration to patients suffering from age-related macular degeneration.

[1]  D. Dacey,et al.  Origins of perception : retinal ganglion cell diversity and the creation of parallel visual pathways , 2011 .

[2]  Daniel Palanker,et al.  Design of a high-resolution optoelectronic retinal prosthesis , 2005, Journal of neural engineering.

[3]  Jonathan B Demb,et al.  Intrinsic properties and functional circuitry of the AII amacrine cell , 2012, Visual Neuroscience.

[4]  Steven Hughes,et al.  Long-term restoration of visual function in end-stage retinal degeneration using subretinal human melanopsin gene therapy , 2017, Proceedings of the National Academy of Sciences.

[5]  N Raimundo,et al.  ESGCT XXV Anniversary Congress in Collaboration with the German Society for Gene Therapy October 17-20, 2017 Berlin, Germany. , 2017, Human gene therapy.

[6]  Autoosa Salari,et al.  Restoration of high-sensitivity and adapting vision with a cone opsin , 2019, Nature Communications.

[7]  Michael Z. Lin,et al.  Characterization of engineered channelrhodopsin variants with improved properties and kinetics. , 2009, Biophysical journal.

[8]  W. Noell,et al.  Ultrastructure of remnant photoreceptors in advanced hereditary retinal degeneration. , 1984, Investigative ophthalmology & visual science.

[9]  R. Masland,et al.  Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin , 2008, Proceedings of the National Academy of Sciences.

[10]  K W Horch,et al.  Reading speed with a pixelized vision system. , 1992, Journal of the Optical Society of America. A, Optics and image science.

[11]  Ahmed Soltan,et al.  Wearable Glasses for Retinal Pigmentiosa Based on Optogenetics , 2019, 2019 IEEE International Symposium on Circuits and Systems (ISCAS).

[12]  Patrick Degenaar,et al.  Multi-site optical excitation using ChR2 and micro-LED array , 2010, Journal of neural engineering.

[13]  Dirk Trauner,et al.  Restoration of patterned vision with an engineered photoactivatable G protein-coupled receptor , 2017, Nature Communications.

[14]  Michael H Berry,et al.  Optogenetic Vision Restoration Using Rhodopsin for Enhanced Sensitivity , 2015, Molecular therapy : the journal of the American Society of Gene Therapy.

[15]  Dirk Trauner,et al.  Tuning photochromic ion channel blockers. , 2011, ACS chemical neuroscience.

[16]  Patrick Degenaar,et al.  A Processing Platform for Optoelectronic/Optogenetic Retinal Prosthesis , 2013, IEEE Transactions on Biomedical Engineering.

[17]  Larry J. Hornbeck,et al.  Digital Light Processing for high-brightness high-resolution applications , 1997, Electronic Imaging.

[18]  Yossi Mandel,et al.  Head mounted DLP for visual stimulation in freely moving rats: a novel tool for visual neuroscience research , 2015, Photonics West - Optoelectronic Materials and Devices.

[19]  Robert J. Greenberg,et al.  The Argus® II retinal prosthesis system: An overview , 2013, 2013 IEEE International Conference on Multimedia and Expo Workshops (ICMEW).

[20]  A. Sher,et al.  Photovoltaic Retinal Prosthesis with High Pixel Density , 2012, Nature Photonics.

[21]  Valentina Emiliani,et al.  Three-dimensional holographic photostimulation of the dendritic arbor , 2011, Journal of neural engineering.

[22]  Valerie C. Coffey,et al.  Optogenetics: Controlling Neurons with Photons , 2018 .

[23]  Justin C. Williams,et al.  From Optogenetic Technologies to Neuromodulation Therapies , 2013, Science Translational Medicine.

[24]  Annette E. Allen,et al.  Restoration of Vision with Ectopic Expression of Human Rod Opsin , 2015, Current Biology.

[25]  E. Isacoff,et al.  Scanless two-photon excitation of channelrhodopsin-2 , 2010, Nature Methods.

[26]  T Georgi,et al.  First experience with The IRIS retinal implant system , 2009 .

[27]  Alexandre Yakovlev,et al.  Optogenetics in Silicon: A Neural Processor for Predicting Optically Active Neural Networks , 2017, IEEE Transactions on Biomedical Circuits and Systems.

[28]  Tim Gollisch,et al.  Eye Smarter than Scientists Believed: Neural Computations in Circuits of the Retina , 2010, Neuron.

[29]  D V Palanker,et al.  Holographic display system for restoration of sight to the blind , 2013, Journal of neural engineering.

[30]  Volker Busskamp,et al.  Biophysical Properties of Optogenetic Tools and Their Application for Vision Restoration Approaches , 2016, Front. Syst. Neurosci..

[31]  Philippe Hantraye,et al.  A New Promoter Allows Optogenetic Vision Restoration with Enhanced Sensitivity in Macaque Retina. , 2017, Molecular therapy : the journal of the American Society of Gene Therapy.

[32]  M. Bethge,et al.  Inhibition decorrelates visual feature representations in the inner retina , 2017, Nature.

[33]  Stefan R. Pulver,et al.  Independent Optical Excitation of Distinct Neural Populations , 2014, Nature Methods.

[34]  Daniel Palanker,et al.  Photovoltaic restoration of sight in age-related macular degeneration (Conference Presentation) , 2019 .

[35]  Olivier Marre,et al.  Red‐shifted channelrhodopsin stimulation restores light responses in blind mice, macaque retina, and human retina , 2016, EMBO molecular medicine.

[36]  D. Dacey The mosaic of midget ganglion cells in the human retina , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[37]  Eriko Sugano,et al.  Channelrhodopsin-2 gene transduced into retinal ganglion cells restores functional vision in genetically blind rats. , 2010, Experimental eye research.

[38]  E. Bamberg,et al.  Ultra light-sensitive and fast neuronal activation with the Ca2+-permeable channelrhodopsin CatCh , 2011, Nature Neuroscience.

[39]  R. Leigh,et al.  The neurology of eye movements , 2006 .

[40]  Olivier Marre,et al.  Targeting channelrhodopsin-2 to ON-bipolar cells with vitreally administered AAV Restores ON and OFF visual responses in blind mice. , 2015, Molecular therapy : the journal of the American Society of Gene Therapy.

[41]  Arjun Bharioke,et al.  Targeting neuronal and glial cell types with synthetic promoter AAVs in mice, non-human primates, and humans , 2018, bioRxiv.

[42]  D Mendlovic,et al.  Optical transfer function design by use of a phase-only coherent transfer function. , 1997, Applied optics.

[43]  Konrad Lehmann,et al.  Visual Function in Mice with Photoreceptor Degeneration and Transgenic Expression of Channelrhodopsin 2 in Ganglion Cells , 2010, The Journal of Neuroscience.

[44]  Mohamad Sawan,et al.  Active Control of μLED Arrays for Optogenetic Stimulation , 2018, 2018 IEEE International Symposium on Circuits and Systems (ISCAS).

[45]  Walid I Al-Atabany,et al.  Designing and testing scene enhancement algorithms for patients with retina degenerative disorders , 2010, Biomedical engineering online.

[46]  Pleun Maaskant,et al.  Development of optics with micro-LED arrays for improved opto-electronic neural stimulation , 2013, Photonics West - Biomedical Optics.

[47]  I. Underwood,et al.  Active-Matrix GaN Micro Light-Emitting Diode Display With Unprecedented Brightness , 2015, IEEE Transactions on Electron Devices.

[48]  Ahmed Soltan,et al.  A head mounted device stimulator for optogenetic retinal prosthesis , 2018, Journal of neural engineering.

[49]  Carlo Cavallotti,et al.  Comprar Age-Related Changes of the Human Eye | Cavallotti, Carlo | 9781934115558 | Springer , 2008 .

[50]  Ryad Benosman,et al.  Modeling the Electro-chemical Properties of Microbial Opsin ChrimsonR for Application to Optogenetics-based Vision Restoration , 2018, bioRxiv.

[51]  David R Williams,et al.  Intravitreal injection of AAV2 transduces macaque inner retina. , 2011, Investigative ophthalmology & visual science.

[52]  Zhuo-Hua Pan,et al.  Optogenetic Approaches to Restoring Vision. , 2015, Annual review of vision science.

[53]  A. Sher,et al.  Photovoltaic restoration of sight with high visual acuity , 2015, Nature Medicine.

[54]  Richard A. Normann,et al.  Simulation of a phosphene-based visual field: Visual acuity in a pixelized vision system , 2006, Annals of Biomedical Engineering.

[55]  W. Mokwa,et al.  Implantation and explantation of an active epiretinal visual prosthesis: 2-year follow-up data from the EPIRET3 prospective clinical trial , 2012, Eye.

[56]  Hongxing Jiang,et al.  III-Nitride full-scale high-resolution microdisplays , 2011 .

[57]  Caroline Murawski,et al.  Photostimulation for In Vitro Optogenetics with High‐Power Blue Organic Light‐Emitting Diodes , 2019, Advanced biosystems.

[58]  James D. Weiland,et al.  Retinal stimulation strategies to restore vision: Fundamentals and systems , 2016, Progress in Retinal and Eye Research.

[59]  B. Roska,et al.  Optogenetic therapy for retinitis pigmentosa , 2011, Gene Therapy.

[60]  J. Dowling,et al.  Organization of vertebrate retinas. , 1970, Investigative ophthalmology.

[61]  Daniel V. Palanker,et al.  Tissue Damage by Pulsed Electrical Stimulation , 2007, IEEE Transactions on Biomedical Engineering.

[62]  Valentina Emiliani,et al.  Holographic Photolysis for Multiple Cell Stimulation in Mouse Hippocampal Slices , 2010, PloS one.

[63]  Chris Slinger,et al.  Computer-generated holography as a generic display technology , 2005, Computer.

[64]  D. Kleinfeld,et al.  ReaChR: A red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation , 2013, Nature Neuroscience.

[65]  Zhuo-Hua Pan,et al.  Ectopic Expression of Multiple Microbial Rhodopsins Restores ON and OFF Light Responses in Retinas with Photoreceptor Degeneration , 2009, The Journal of Neuroscience.

[66]  Jessy D. Dorn,et al.  Interim results from the international trial of Second Sight's visual prosthesis. , 2012, Ophthalmology.

[67]  R. Klein,et al.  Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. , 2014, The Lancet. Global health.

[68]  Deniz Dalkara,et al.  Inner limiting membrane barriers to AAV-mediated retinal transduction from the vitreous. , 2009, Molecular therapy : the journal of the American Society of Gene Therapy.

[69]  I. Wong,et al.  Promises of stem cell therapy for retinal degenerative diseases , 2011, Graefe's Archive for Clinical and Experimental Ophthalmology.

[70]  Luke Theogarajan,et al.  Strategies for restoring vision to the blind: current and emerging technologies , 2012, Neuroscience Letters.

[71]  Deniz Dalkara,et al.  In Vivo–Directed Evolution of a New Adeno-Associated Virus for Therapeutic Outer Retinal Gene Delivery from the Vitreous , 2013, Science Translational Medicine.

[72]  Elisa E. Konofagou,et al.  Non-invasive, Focused Ultrasound-Facilitated Gene Delivery for Optogenetics , 2017, Scientific Reports.

[73]  Caroline Murawski,et al.  High-brightness organic light-emitting diodes for optogenetic control of Drosophila locomotor behaviour , 2016, Scientific Reports.

[74]  H. Morkoç,et al.  Micro-LEDs, a Manufacturability Perspective , 2019, Applied Sciences.

[75]  H. Kishima,et al.  Testing of semichronically implanted retinal prosthesis by suprachoroidal-transretinal stimulation in patients with retinitis pigmentosa. , 2011, Investigative ophthalmology & visual science.

[76]  K. Deisseroth,et al.  Ultrafast optogenetic control , 2010, Nature Neuroscience.

[77]  B. Fan,et al.  Miniaturized optogenetic neural implants: a review. , 2015, Lab on a chip.

[78]  K. Horch,et al.  Mobility performance with a pixelized vision system , 1992, Vision Research.

[79]  Dirk Trauner,et al.  Photochromic blockers of voltage-gated potassium channels. , 2009, Angewandte Chemie.

[80]  Frank S Werblin,et al.  Six different roles for crossover inhibition in the retina: Correcting the nonlinearities of synaptic transmission , 2010, Visual Neuroscience.

[81]  Malte C Gather,et al.  Arrays of microscopic organic LEDs for high-resolution optogenetics , 2016, Science Advances.

[82]  Serge Picaud,et al.  Noninvasive gene delivery to foveal cones for vision restoration. , 2018, JCI insight.

[83]  Zhuo-Hua Pan,et al.  Evaluation of AAV-mediated expression of Chop2-GFP in the marmoset retina. , 2010, Investigative ophthalmology & visual science.

[84]  Inbar Brosh,et al.  Holographic optogenetic stimulation of patterned neuronal activity for vision restoration , 2013, Nature Communications.

[85]  Laura Waller,et al.  Precise multimodal optical control of neural ensemble activity , 2018, Nature Neuroscience.

[86]  Angelika Braun,et al.  Artificial vision with wirelessly powered subretinal electronic implant alpha-IMS , 2013, Proceedings of the Royal Society B: Biological Sciences.

[87]  J. Weiland,et al.  Retinal prosthesis for the blind. , 2002, Survey of ophthalmology.

[88]  Avni P. Finn,et al.  Argus II retinal prosthesis system: a review of patient selection criteria, surgical considerations, and post-operative outcomes , 2018, Clinical ophthalmology.

[89]  Ahmed Soltan,et al.  High density μLED array for retinal prothesis with a eye-tracking system , 2016, 2016 IEEE Biomedical Circuits and Systems Conference (BioCAS).

[90]  Levent Onural,et al.  Digital Holographic Three-Dimensional Video Displays , 2011, Proceedings of the IEEE.

[91]  M P Simunovic,et al.  Optogenetic approaches to vision restoration , 2019, Experimental eye research.

[92]  E. Zrenner,et al.  Can subretinal microphotodiodes successfully replace degenerated photoreceptors? , 1999, Vision Research.

[93]  Matthias Bethge,et al.  The functional diversity of retinal ganglion cells in the mouse , 2015, Nature.

[94]  Douglas S Kim,et al.  Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration , 2008, Nature Neuroscience.

[95]  Ahmed Soltan,et al.  High density, high radiance μLED matrix for optogenetic retinal prostheses and planar neural stimulation , 2017, IEEE Transactions on Biomedical Circuits and Systems.

[96]  K. Deisseroth,et al.  Optogenetics , 2013, Proceedings of the National Academy of Sciences.

[97]  Dirk Trauner,et al.  Photochemical Restoration of Visual Responses in Blind Mice , 2012, Neuron.

[98]  Christof Koch,et al.  Optogenetics: 10 years after ChR2 in neurons—views from the community , 2015, Nature Neuroscience.

[99]  Laura Waller,et al.  Three-dimensional scanless holographic optogenetics with temporal focusing (3D-SHOT) , 2017, Nature Communications.

[100]  Mark S. Humayun,et al.  Retinal Prostheses: The Argus System , 2018 .

[101]  D. Dacey,et al.  Dendritic field size and morphology of midget and parasol ganglion cells of the human retina. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[102]  Sheila Nirenberg,et al.  Restoring Vision to the Blind : Optogenetics The Lasker / IRRF Initiative for Innovation in Vision Science Discussion Leaders : , 2014 .

[103]  Patrick Degenaar,et al.  Micro-LED arrays: a tool for two-dimensional neuron stimulation , 2008 .

[104]  E. Boyden Optogenetics and the future of neuroscience , 2015, Nature Neuroscience.

[105]  P. Heiduschka,et al.  Non-viral gene therapy for GDNF production in RCS rat: the crucial role of the plasmid dose , 2011, Gene Therapy.

[106]  Patrick Degenaar,et al.  Seeing the light: a photonic visual prosthesis for the blind , 2009, BiOS.

[107]  Hongkui Zeng,et al.  Diverse Central Projection Patterns of Retinal Ganglion Cells. , 2017, Cell reports.

[108]  Chethan Pandarinath,et al.  Retinal prosthetic strategy with the capacity to restore normal vision , 2012, Proceedings of the National Academy of Sciences.

[109]  A. Milam,et al.  Preservation of the inner retina in retinitis pigmentosa. A morphometric analysis. , 1997, Archives of ophthalmology.

[110]  J. Goodman Introduction to Fourier optics , 1969 .

[111]  Botond Roska,et al.  Restoring vision , 2018, Nature.

[112]  A. Dizhoor,et al.  Ectopic Expression of a Microbial-Type Rhodopsin Restores Visual Responses in Mice with Photoreceptor Degeneration , 2006, Neuron.

[113]  Karl Deisseroth,et al.  Genetic Reactivation of Cone Photoreceptors Restores Visual Responses in Retinitis Pigmentosa , 2010, Science.

[114]  Feng Zhang,et al.  Channelrhodopsin-2 and optical control of excitable cells , 2006, Nature Methods.

[115]  Edward S. Boyden,et al.  A history of optogenetics: the development of tools for controlling brain circuits with light , 2011, F1000 biology reports.

[116]  R. Masland The fundamental plan of the retina , 2001, Nature Neuroscience.

[117]  Jean Bennett,et al.  Efficient transduction and optogenetic stimulation of retinal bipolar cells by a synthetic adeno-associated virus capsid and promoter , 2014, EMBO molecular medicine.

[118]  Simone Brogi,et al.  A light in the dark: state of the art and perspectives in optogenetics and optopharmacology for restoring vision. , 2019, Future medicinal chemistry.

[119]  Michael H. Herzog,et al.  Time Slices: What Is the Duration of a Percept? , 2016, PLoS biology.

[120]  Christoph Lutz,et al.  Holographic photolysis of caged neurotransmitters , 2008, Nature Methods.

[121]  Stephen A. Baccus,et al.  Image Processing for a High-Resolution Optoelectronic Retinal Prosthesis , 2007, IEEE Transactions on Biomedical Engineering.

[122]  Neil M. Bressler,et al.  Public Attitudes About Eye and Vision Health. , 2016, JAMA ophthalmology.

[123]  Kristina Grifantini To See Anew: New Technologies Are Moving Rapidly Toward Restoring or Enabling Vision in the Blind , 2017, IEEE Pulse.

[124]  William J Feuer,et al.  Gene therapy for leber congenital amaurosis caused by RPE65 mutations: safety and efficacy in 15 children and adults followed up to 3 years. , 2012, Archives of ophthalmology.

[125]  Valentina Emiliani,et al.  Patterned two-photon illumination by spatiotemporal shaping of ultrashort pulses. , 2008, Optics express.

[126]  Kei May Lau,et al.  360 PPI Flip-Chip Mounted Active Matrix Addressable Light Emitting Diode on Silicon (LEDoS) Micro-Displays , 2013, Journal of Display Technology.

[127]  V. Perry,et al.  The topography of magnocellular projecting ganglion cells (M-ganglion cells) in the primate retina , 1991, Neuroscience.

[128]  Yitzhak Yitzhaky,et al.  Active confocal imaging for visual prostheses , 2015, Vision Research.

[129]  B. Dreher,et al.  Ontogeny of the primate fovea:a central issue in retinal development , 1998, Progress in Neurobiology.

[130]  Hongli Li,et al.  Gene therapy for ocular diseases meditated by ultrasound and microbubbles (Review) , 2015, Molecular medicine reports.

[131]  Albrecht Rothermel,et al.  Functionality and Performance of the Subretinal Implant Chip Alpha AMS , 2018 .

[132]  Alfred Stett,et al.  Subretinal electronic chips allow blind patients to read letters and combine them to words , 2010, Proceedings of the Royal Society B: Biological Sciences.

[133]  Arup Roy,et al.  Factors affecting perceptual thresholds in epiretinal prostheses. , 2008, Investigative ophthalmology & visual science.

[134]  Rava Azeredo da Silveira,et al.  Cell Types, Circuits, Computation , 2011, Current Opinion in Neurobiology.

[135]  Patrick Degenaar,et al.  Optobionic vision—a new genetically enhanced light on retinal prosthesis , 2009, Journal of neural engineering.

[136]  Patrick Degenaar,et al.  A New Individually Addressable Micro-LED Array for Photogenetic Neural Stimulation , 2010, IEEE Transactions on Biomedical Circuits and Systems.

[137]  John G. Flannery,et al.  Restoration of visual function by expression of a light-gated mammalian ion channel in retinal ganglion cells or ON-bipolar cells , 2014, Proceedings of the National Academy of Sciences.

[138]  Zy Li,et al.  Rod photoreceptor neurite sprouting in retinitis pigmentosa , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[139]  Edward S Boyden,et al.  Virally delivered channelrhodopsin-2 safely and effectively restores visual function in multiple mouse models of blindness. , 2011, Molecular therapy : the journal of the American Society of Gene Therapy.

[140]  Bryan Jones,et al.  Retinal Prosthetics, Optogenetics, and Chemical Photoswitches , 2014, ACS chemical neuroscience.

[141]  Elena Ivanova,et al.  Block of Gap Junctions Eliminates Aberrant Activity and Restores Light Responses during Retinal Degeneration , 2013, The Journal of Neuroscience.

[142]  Andrew J. Woods 3-D displays in the home , 2009 .

[143]  Rafael Yuste,et al.  Two-photon optogenetics of dendritic spines and neural circuits in 3D , 2012, Nature Methods.