Kinetics of Deformation and Recovery inQuasi-Stationary Deformation of Particle-Hardened Ultrafine-Grained Cu-Zr at 0.5 Tm Studied by Load Changes

Wolfgang Blum 1, Jiři Dvořák 2, Petr Král 2, Philip Eisenlohr 3 and Vaclav Sklenička 2 1 Dep. of Materials Science, Inst. I, University of Erlangen-Nuremberg, Martensstr. 5, D-91058 Erlangen, Germany; wolfgang.blum@fau.de 2 Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Žižkova, CZ-616 62 Brno, Czech Republic 3 Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA

[1]  W. Blum Discussion: Activation volumes of plastic deformation of crystals , 2018 .

[2]  H. V. Swygenhoven,et al.  Dislocation interactions at reduced strain rates in atomistic simulations of nanocrystalline Al , 2018 .

[3]  H. V. Swygenhoven,et al.  Grain size and alloying effects on dynamic recovery in nanocrystalline metals , 2016 .

[4]  H. V. Swygenhoven,et al.  Dynamic recovery in nanocrystalline Ni , 2015 .

[5]  W. Blum,et al.  Control of dynamic recovery and strength by subgrain boundaries – insights from stress-change tests on CaF2 single crystals , 2011 .

[6]  K. Milička Constant structure creep experiments on aluminium , 2011 .

[7]  G. Gottstein,et al.  Stress-driven migration of symmetrical 〈1 0 0〉 tilt grain boundaries in Al bicrystals , 2009 .

[8]  B. Schmitt,et al.  Creep in nanocrystalline Ni during X-ray diffraction , 2009 .

[9]  W. Blum,et al.  Creep transients during stress changes in ultrafine-grained copper , 2006 .

[10]  U. F. Kocks,et al.  Physics and phenomenology of strain hardening: the FCC case , 2003 .

[11]  M. E. Kassner,et al.  Five-power-law creep in single phase metals and alloys , 2000 .

[12]  E. Nes,et al.  Modelling of work hardening and stress saturation in FCC metals , 1997 .

[13]  F. J. Humphreys,et al.  Recrystallization and Related Annealing Phenomena , 1995 .

[14]  K. Milička Constant structure experiments in high temperature primary creep of some metallic materials , 1994 .

[15]  K. Milička Constant structure creep in metals after stress reduction in steady state stage , 1993 .

[16]  W. Blum,et al.  Two mechanisms of dislocation motion during creep , 1989 .

[17]  W. Blum,et al.  Subgrain Boundary Migration During Creep of LiF , 1989 .

[18]  E. Weckert,et al.  On the interpretation of the “Internal stress” determined from dip tests during creep of Al-5at.%Mg , 1987 .

[19]  U. F. Kocks,et al.  Forward and reverse rearrangements of dislocations in tangled walls , 1986 .

[20]  E. Weckert,et al.  Transient Creep of an Al-5at%Mg Solid Solution , 1985 .

[21]  W. Blum On the evolution of the dislocation structure during work hardening and creep , 1984 .

[22]  D. Caillard In situ creep experiments in weak beam conditions, in al at intermediate temperature interaction of dislocations with subboundaries , 1984 .

[23]  M. Ashby,et al.  Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics , 1982 .

[24]  U. F. Kocks,et al.  Length changes and stress effects during recovery of deformed aluminum , 1982 .

[25]  W. Nix,et al.  Mechanisms Controlling Creep of Single Phase Metals and Alloys , 1979 .

[26]  W. Blum Dislocation Models of Plastic Deformation of Metals at Elevated Temperatures / Versetzungsmodelle der Hochtemperaturplastizität metallischer Werkstoffe , 1977, International Journal of Materials Research - Zeitschrift für Metallkunde.

[27]  J. Hausselt,et al.  Dynamic recovery during and after steady state deformation of Al-11wt%Zn , 1976 .

[28]  A. Argon,et al.  Steady-state creep of alloys due to viscous motion of dislocations☆ , 1976 .

[29]  D. Warrington,et al.  Sub-grain boundary migration in aluminium , 1972 .

[30]  Oleg D. Sherby,et al.  Mechanical behavior of crystalline solids at elevated temperature , 1968 .