Fast resonance assignment and fold determination of human superoxide dismutase by high-resolution proton-detected solid-state MAS NMR spectroscopy.

Re-protonation is key: A combination of a high magnetic field (1 GHz) and ultra-fast magic-angle spinning (60 kHz) allows easy detection of NMR spectra revealing details of secondary and tertiary structures of medium-sized proteins. The technique was applied to the 153-residue microcrystalline Zn II-loaded superoxide dismutase (ZnII-SOD) fully [ 2H,13C,15N]-labeled and 100% re-protonated at the exchangeable sites. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

[1]  A. Wand,et al.  Assignment of the backbone resonances for microcrystalline ubiquitin. , 2004, Journal of the American Chemical Society.

[2]  U. Fink,et al.  Narrow carbonyl resonances in proton-diluted proteins facilitate NMR assignments in the solid-state , 2010, Journal of biomolecular NMR.

[3]  J. Tainer,et al.  Atomic structures of wild-type and thermostable mutant recombinant human Cu,Zn superoxide dismutase. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Francesco Fiorito,et al.  Automated amino acid side-chain NMR assignment of proteins using 13C- and 15N-resolved 3D [1H,1H]-NOESY , 2008, Journal of biomolecular NMR.

[5]  R. Griffin,et al.  Chemical shift correlation spectroscopy in rotating solids: Radio frequency‐driven dipolar recoupling and longitudinal exchange , 1992 .

[6]  Hartmut Oschkinat,et al.  Optimum levels of exchangeable protons in perdeuterated proteins for proton detection in MAS solid-state NMR spectroscopy , 2010, Journal of biomolecular NMR.

[7]  C. Rienstra,et al.  Proton-detected solid-state NMR spectroscopy of fully protonated proteins at 40 kHz magic-angle spinning. , 2007, Journal of the American Chemical Society.

[8]  Kurt W Zilm,et al.  Sensitive high resolution inverse detection NMR spectroscopy of proteins in the solid state. , 2003, Journal of the American Chemical Society.

[9]  L. Kay,et al.  Overcoming the overlap problem in the assignment of 1H NMR spectra of larger proteins by use of three-dimensional heteronuclear 1H-15N Hartmann-Hahn-multiple quantum coherence and nuclear Overhauser-multiple quantum coherence spectroscopy: application to interleukin 1 beta. , 1989, Biochemistry.

[10]  Uwe Fink,et al.  Structure calculation from unambiguous long-range amide and methyl 1H-1H distance restraints for a microcrystalline protein with MAS solid-state NMR spectroscopy. , 2011, Journal of the American Chemical Society.

[11]  B. Reif,et al.  Festkörper‐NMR‐Spektroskopie mit Protonendetektion an fibrillären Proteinen und Membranproteinen , 2011 .

[12]  Matthias Huber,et al.  A proton-detected 4D solid-state NMR experiment for protein structure determination. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[13]  Roberta Pierattelli,et al.  Band-selective 1H-13C cross-polarization in fast magic angle spinning solid-state NMR spectroscopy. , 2008, Journal of the American Chemical Society.

[14]  L. Kay,et al.  A novel approach for sequential assignment of proton, carbon-13, and nitrogen-15 spectra of larger proteins: heteronuclear triple-resonance three-dimensional NMR spectroscopy. Application to calmodulin , 1990 .

[15]  L. Kay,et al.  A novel approach for sequential assignment of 1H, 13C, and 15N spectra of proteins: heteronuclear triple-resonance three-dimensional NMR spectroscopy. Application to calmodulin. , 1990, Biochemistry.

[16]  E. Mandelkow,et al.  Low-power solid-state NMR experiments for resonance assignment under fast magic-angle spinning. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[17]  B. Meier,et al.  Protein structure determination from 13C spin-diffusion solid-state NMR spectroscopy. , 2008, Journal of the American Chemical Society.

[18]  Uwe Fink,et al.  Proton-detected solid-state NMR spectroscopy of fibrillar and membrane proteins. , 2011, Angewandte Chemie.

[19]  R G Griffin,et al.  1H-1H MAS correlation spectroscopy and distance measurements in a deuterated peptide. , 2001, Journal of magnetic resonance.

[20]  Andrew J. Nieuwkoop,et al.  Solid-state protein-structure determination with proton-detected triple-resonance 3D magic-angle-spinning NMR spectroscopy. , 2007, Angewandte Chemie.

[21]  K. Wüthrich,et al.  Protein NMR structure determination with automated NOE-identification in the NOESY spectra using the new software ATNOS , 2002, Journal of biomolecular NMR.

[22]  B. Reif,et al.  Ultrahochaufgelöste 1H‐MAS‐Festkörper‐NMR‐Spektren unter Verwendung von hohen Deuterierungsgraden , 2006 .

[23]  Lyndon Emsley,et al.  Enhanced Resolution and Coherence Lifetimes in the Solid-State NMR Spectroscopy of Perdeuterated Proteins under Ultrafast Magic-Angle Spinning , 2011 .

[24]  I. Bertini,et al.  Solid-state NMR spectroscopy of a paramagnetic protein: assignment and study of human dimeric oxidized CuII-ZnII superoxide dismutase (SOD). , 2007, Angewandte Chemie.

[25]  Michael A Hough,et al.  Variable metallation of human superoxide dismutase: atomic resolution crystal structures of Cu-Zn, Zn-Zn and as-isolated wild-type enzymes. , 2006, Journal of molecular biology.

[26]  I. Bertini,et al.  Transverse-dephasing optimized homonuclear j-decoupling in solid-state NMR spectroscopy of uniformly 13C-labeled proteins. , 2009, Journal of the American Chemical Society.

[27]  B. Reif,et al.  Deuterated peptides and proteins in MAS solid-state NMR , 2006 .

[28]  Torsten Herrmann,et al.  Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. , 2002, Journal of molecular biology.

[29]  Beat H. Meier,et al.  Amyloid Fibrils of the HET-s(218–289) Prion Form a β Solenoid with a Triangular Hydrophobic Core , 2008, Science.

[30]  A. McDermott Structure and dynamics of membrane proteins by magic angle spinning solid-state NMR. , 2009, Annual review of biophysics.

[31]  A. Loquet,et al.  Protein 3D structure determination by high-resolution solid-state NMR , 2010 .

[32]  Ronald Kühne,et al.  Solid-state NMR and SAXS studies provide a structural basis for the activation of αB-crystallin oligomers , 2010, Nature Structural &Molecular Biology.

[33]  Christian Griesinger,et al.  Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients , 1999 .

[34]  Roberta Pierattelli,et al.  Fast acquisition of multi-dimensional spectra in solid-state NMR enabled by ultra-fast MAS. , 2009, Journal of magnetic resonance.

[35]  Y. Ishii,et al.  Sensitivity enhancement in solid-state (13)C NMR of synthetic polymers and biopolymers by (1)H NMR detection with high-speed magic angle spinning. , 2001, Journal of the American Chemical Society.

[36]  U. Fink,et al.  Proton-detected scalar coupling based assignment strategies in MAS solid-state NMR spectroscopy applied to perdeuterated proteins. , 2008, Journal of magnetic resonance.

[37]  B. Reif,et al.  Ultrahigh resolution in proton solid-state NMR spectroscopy at high levels of deuteration. , 2006, Angewandte Chemie.

[38]  M. Nilges,et al.  3D structure determination of the Crh protein from highly ambiguous solid-state NMR restraints. , 2008, Journal of the American Chemical Society.

[39]  Torsten Herrmann,et al.  Automated sequence-specific protein NMR assignment using the memetic algorithm MATCH , 2008, Journal of biomolecular NMR.