Monitoring Information and Probabilistic-Based Prediction Models for the Performance Assessment of Concrete Structures

AbstractThe lifecycle analysis and assessment of concrete structures requires an efficient evaluation and prediction of time-variable mechanical and chemical degradation processes. Inspection systems and novel monitoring methods are of valuable support in these important tasks, but due to their practical feasibility and the costs that they entail, they also present limitations. Therefore, information gathered with inspection methods for structural performance assessment needs to be used in the most effective manner possible, e.g., with respect to serviceability limits, bearing capacity, robustness, and redundancy of a given structure, among others. The aim of this paper is to present a framework for the prediction of time-dependent performance indicators of concrete structures prone to fatigue, with emphasis on a wind turbine foundation, including reliability. A theoretical background and selected structural performance indicators as well as associated lifecycle prediction methods—incorporating inspection...

[1]  Ian F. C. Smith,et al.  Multimodel Structural Performance Monitoring , 2010 .

[2]  Steinar Helland Design for service life: implementation of fib Model Code 2010 rules in the operational code ISO 16204 , 2013 .

[3]  Josef Hegger,et al.  Erläuterungen zum Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken - Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau mit Nationalem Anhang , 2016 .

[4]  Yan-Gang Zhao,et al.  Closure of "Estimating Joint Failure Probability of Series Structural Systems" , 2007 .

[5]  Bruce R. Ellingwood,et al.  Probabilistic methods for condition assessment and life prediction of concrete structures in nuclear power plants , 1993 .

[6]  Jan M. van Noortwijk,et al.  A survey of the application of gamma processes in maintenance , 2009, Reliab. Eng. Syst. Saf..

[7]  Konrad Bergmeister,et al.  Zyklisch belastete Betonstrukturen , 2012 .

[8]  Dan M. Frangopol,et al.  Use of Monitoring Extreme Data for the Performance Prediction of Structures: General Approach , 2008 .

[9]  Joachim Göhlmann,et al.  Schädigungsberechnung an einem Spannbetonschaft für eine Windenergieanlage unter mehrstufiger Ermüdung , 2006 .

[10]  Drahomír Novák,et al.  Inverse reliability problem solved by artificial neural networks , 2014 .

[11]  M. Vořechovský Correlation control in small sample Monte Carlo type simulations II: Analysis of estimation formulas, random correlation and perfect uncorrelatedness , 2012 .

[12]  X. Fang,et al.  Structural damage detection using neural network with learning rate improvement , 2005 .

[13]  Ross B. Corotis,et al.  Optimal Life-Cycle Costing with Partial Observability , 2000 .

[14]  David Lehký,et al.  Neural Network Based Damage Detection of Dynamically Loaded Structures , 2009, EANN.

[15]  Konrad Bergmeister,et al.  Monitoringbasierte Lebenszeitabschätzung von Betonstrukturen , 2013 .

[16]  Dan M. Frangopol,et al.  Efficient, accurate, and simple Markov chain model for the life-cycle analysis of bridge groups , 2013 .

[17]  J. M. van Noortwijk,et al.  The use of lifetime distributions in bridge maintenance and replacement modelling , 2004 .

[18]  Mahesh D. Pandey,et al.  Gamma processes and peaks-over-threshold distributions for time-dependent reliability , 2007, Reliab. Eng. Syst. Saf..

[19]  Dan M. Frangopol,et al.  Effects of Damage and Redundancy on Structural Reliability , 1987 .

[20]  M. L. Wang,et al.  Structural Damage Detection Using an Iterative Neural Network , 2000 .

[21]  M Hofmann,et al.  Pre-assessment of existing road bridges - New procedure for a rough but quick estimation of the capacity of existing road bridges , 2012 .

[22]  Comite Euro-International du Beton,et al.  CEB-FIP Model Code 1990 , 1993 .

[23]  Alfred Strauss,et al.  Experimentelle Untersuchung von ermüdungsbeanspruchten Betonstrukturen zur Feststellung des realen Schädigungsgrades , 2012 .