Linearizability conditions of time-reversible cubic systems

Abstract In this paper we present the necessary and sufficient conditions for linearizability of the planar time-reversible cubic complex system x ˙ = x + P ( x , y ) , y ˙ = − y + Q ( x , y ) . From these conditions, the necessary and sufficient conditions for the origin to be an isochronous center of the time-reversible cubic real system u ˙ = − v + F ( u , v ) , v ˙ = u + G ( u , v ) can be obtained. Thus, the isochronous center problem of time-reversible cubic systems is solved completely.

[1]  C. Rousseau,et al.  Nondegenerate linearizable centres of complex planar quadratic and symmetric cubic systems in $\mathbb{C}^2$ , 2001 .

[2]  Carmen Chicone,et al.  Bifurcation of critical periods for plane vector fields , 1989 .

[3]  Valery G. Romanovski,et al.  The centre and isochronicity problems for some cubic systems , 2001 .

[4]  Valery G. Romanovski,et al.  The Sibirsky component of the center variety of polynomial differential systems , 2003, J. Symb. Comput..

[5]  P. Ponzo Nonlinear Oscillations in a Second Order System , 1964 .

[6]  Christiane Rousseau,et al.  Normalizable, Integrable, and Linearizable Saddle Points for Complex Quadratic Systems in $$\mathbb{C}^2 $$ , 2003 .

[7]  Valery G. Romanovski,et al.  Isochronicity of analytic systems via Urabe's criterion , 2007 .

[8]  Valery G. Romanovski,et al.  Linearizability of linear systems perturbed by fifth degree homogeneous polynomials , 2007 .

[9]  Jaume Giné,et al.  Isochronous centers of a linear center perturbed by fourth degree homogeneous polynomial , 1999 .

[10]  C. Rousseau,et al.  Normalizability, Synchronicity, and Relative Exactness for Vector Fields in C2 , 2004 .

[11]  Jaume Giné,et al.  Isochronous centers of a linear center perturbed by fifth degree homogeneous polynomials , 2000 .

[12]  Colin Christopher,et al.  Isochronous centers in planar polynomial systems , 1997 .

[13]  Valery G. Romanovski,et al.  Linearizability conditions of time-reversible quartic systems having homogeneous nonlinearities , 2008 .

[14]  Xingwu Chen,et al.  Non-isochronicity of the center at the origin in polynomial Hamiltonian systems with even degree nonlinearities , 2008 .

[15]  Jaume Giné,et al.  Isochronicity into a family of time-reversible cubic vector fields , 2001, Appl. Math. Comput..

[16]  B. Buchberger Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystems , 1970 .

[17]  Christiane Rousseau,et al.  Linearization of Isochronous Centers , 1995 .

[18]  B. Schuman Sur la forme normale de Birkhoff et les centres isochrones , 1996 .

[19]  J. Villadelprat,et al.  Nonexistence of Isochronous Centers in Planar Polynomial Hamiltonian Systems of Degree Four , 2002 .

[20]  Jaume Giné,et al.  A Class of Reversible Cubic Systems with an Isochronous Center , 1999 .

[21]  Marco Sabatini,et al.  A survey of isochronous centers , 1999 .