Three Systems of Insular Functional Connectivity Identified with Cluster Analysis

Despite much research on the function of the insular cortex, few studies have investigated functional subdivisions of the insula in humans. The present study used resting-state functional connectivity magnetic resonance imaging (MRI) to parcellate the human insular lobe based on clustering of functional connectivity patterns. Connectivity maps were computed for each voxel in the insula based on resting-state functional MRI (fMRI) data and segregated using cluster analysis. We identified 3 insular subregions with distinct patterns of connectivity: a posterior region, functionally connected with primary and secondary somatomotor cortices; a dorsal anterior to middle region, connected with dorsal anterior cingulate cortex, along with other regions of a previously described control network; and a ventral anterior region, primarily connected with pregenual anterior cingulate cortex. Applying these regions to a separate task data set, we found that dorsal and ventral anterior insula responded selectively to disgusting images, while posterior insula did not. These results demonstrate that clustering of connectivity patterns can be used to subdivide cerebral cortex into anatomically and functionally meaningful subregions; the insular regions identified here should be useful in future investigations on the function of the insula.

[1]  Xenophon Papademetris,et al.  Graph-theory based parcellation of functional subunits in the brain from resting-state fMRI data , 2010, NeuroImage.

[2]  R. Todd Constable,et al.  Functional connectivity and alterations in baseline brain state in humans , 2010, NeuroImage.

[3]  Remco J. Renken,et al.  Group analyses of connectivity-based cortical parcellation using repeated k-means clustering , 2009, NeuroImage.

[4]  Catie Chang,et al.  Effects of model-based physiological noise correction on default mode network anti-correlations and correlations , 2009, NeuroImage.

[5]  K. Davis,et al.  Two systems of resting state connectivity between the insula and cingulate cortex , 2009, Human brain mapping.

[6]  A. Schulze-Bonhage,et al.  Functional organization of the human anterior insular cortex , 2009, Neuroscience Letters.

[7]  H. Pashler,et al.  Puzzlingly High Correlations in fMRI Studies of Emotion, Personality, and Social Cognition 1 , 2009, Perspectives on psychological science : a journal of the Association for Psychological Science.

[8]  M. Raichle,et al.  Cortical network functional connectivity in the descent to sleep , 2009, Proceedings of the National Academy of Sciences.

[9]  A. Apkarian,et al.  Parsing pain perception between nociceptive representation and magnitude estimation. , 2009, Journal of neurophysiology.

[10]  M. Rushworth,et al.  Behavioral / Systems / Cognitive Connectivity-Based Parcellation of Human Cingulate Cortex and Its Relation to Functional Specialization , 2008 .

[11]  A. Craig,et al.  How do you feel — now? The anterior insula and human awareness , 2009, Nature Reviews Neuroscience.

[12]  M. Greicius,et al.  Persistent default‐mode network connectivity during light sedation , 2008, Human brain mapping.

[13]  Damien A. Fair,et al.  Defining functional areas in individual human brains using resting functional connectivity MRI , 2008, NeuroImage.

[14]  S Laureys,et al.  Intrinsic Brain Activity in Altered States of Consciousness , 2008, Annals of the New York Academy of Sciences.

[15]  M. P. van den Heuvel,et al.  Normalized Cut Group Clustering of Resting-State fMRI Data , 2008, PloS one.

[16]  Elisabeth J. Ploran,et al.  Evidence Accumulation and the Moment of Recognition: Dissociating Perceptual Recognition Processes Using fMRI , 2007, The Journal of Neuroscience.

[17]  Daniel S. Margulies,et al.  Mapping the functional connectivity of anterior cingulate cortex , 2007, NeuroImage.

[18]  C. M. Kipps,et al.  Disgust and Happiness Recognition Correlate with Anteroventral Insula and Amygdala Volume Respectively in Preclinical Huntington's Disease , 2007, Journal of Cognitive Neuroscience.

[19]  Justin L. Vincent,et al.  Distinct brain networks for adaptive and stable task control in humans , 2007, Proceedings of the National Academy of Sciences.

[20]  Jill Keane,et al.  Disgust sensitivity predicts the insula and pallidal response to pictures of disgusting foods , 2007, The European journal of neuroscience.

[21]  L. Pessoa,et al.  Neural Correlates of Perceptual Choice and Decision Making during Fear–Disgust Discrimination , 2007, The Journal of Neuroscience.

[22]  G. Glover,et al.  Dissociable Intrinsic Connectivity Networks for Salience Processing and Executive Control , 2007, The Journal of Neuroscience.

[23]  Christian Keysers,et al.  Empathy for positive and negative emotions in the gustatory cortex , 2007, NeuroImage.

[24]  A. Anwander,et al.  Connectivity-Based Parcellation of Broca's Area. , 2006, Cerebral cortex.

[25]  Jian Kong,et al.  Using fMRI to dissociate sensory encoding from cognitive evaluation of heat pain intensity , 2006, Human brain mapping.

[26]  J. Hirsch,et al.  A Neural Representation of Categorization Uncertainty in the Human Brain , 2006, Neuron.

[27]  David C. Van Essen,et al.  A Population-Average, Landmark- and Surface-based (PALS) atlas of human cerebral cortex , 2005, NeuroImage.

[28]  Maurizio Corbetta,et al.  The human brain is intrinsically organized into dynamic, anticorrelated functional networks. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Stephen M. Smith,et al.  Investigations into resting-state connectivity using independent component analysis , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[30]  P. Lang International affective picture system (IAPS) : affective ratings of pictures and instruction manual , 2005 .

[31]  D. V. van Essen,et al.  A Population-Average, Landmark- and Surface-based (PALS) atlas of human cerebral cortex. , 2005, NeuroImage.

[32]  J. D Steele,et al.  Segregation of cognitive and emotional function in the prefrontal cortex: a stereotactic meta-analysis , 2004, NeuroImage.

[33]  T. Naidich,et al.  The insula: anatomic study and MR imaging display at 1.5 T. , 2004, AJNR. American journal of neuroradiology.

[34]  A. Young,et al.  Disgusting Smells Activate Human Anterior Insula and Ventral Striatum , 2003, Annals of the New York Academy of Sciences.

[35]  E. Rolls,et al.  Taste‐olfactory convergence, and the representation of the pleasantness of flavour, in the human brain , 2003, The European journal of neuroscience.

[36]  G. Rizzolatti,et al.  Both of Us Disgusted in My Insula The Common Neural Basis of Seeing and Feeling Disgust , 2003, Neuron.

[37]  Chantal Delon-Martin,et al.  fMRI of emotional responses to odors: influence of hedonic valence and judgment, handedness, and gender , 2003, NeuroImage.

[38]  M. Mesulam,et al.  Dissociation of Neural Representation of Intensity and Affective Valuation in Human Gustation , 2003, Neuron.

[39]  M. Baulac,et al.  Functional anatomy of the insula: new insights from imaging , 2003, Surgical and Radiologic Anatomy.

[40]  R. Adolphs,et al.  Dissociable neural systems for recognizing emotions , 2003, Brain and Cognition.

[41]  A. Vighetto,et al.  An attention modulated response to disgust in human ventral anterior insula , 2003, Annals of neurology.

[42]  Vinod Menon,et al.  Functional connectivity in the resting brain: A network analysis of the default mode hypothesis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[43]  R. Stark,et al.  The insula is not specifically involved in disgust processing: an fMRI study , 2002, Neuroreport.

[44]  J. Gabrieli,et al.  Rethinking Feelings: An fMRI Study of the Cognitive Regulation of Emotion , 2002, Journal of Cognitive Neuroscience.

[45]  Francis McGlone,et al.  Functional neuroimaging studies of human somatosensory cortex , 2002, Behavioural Brain Research.

[46]  Y. Lamarre,et al.  Unmyelinated tactile afferents signal touch and project to insular cortex , 2002, Nature Neuroscience.

[47]  A. Craig How do you feel? Interoception: the sense of the physiological condition of the body , 2002, Nature Reviews Neuroscience.

[48]  Thomas E. Nichols,et al.  Thresholding of Statistical Maps in Functional Neuroimaging Using the False Discovery Rate , 2002, NeuroImage.

[49]  F. Mauguière,et al.  Representation of pain and somatic sensation in the human insula: a study of responses to direct electrical cortical stimulation. , 2002, Cerebral cortex.

[50]  Krish D. Singh,et al.  fMRI of Thermal Pain: Effects of Stimulus Laterality and Attention , 2002, NeuroImage.

[51]  Thomas G. Dietterich,et al.  Editors. Advances in Neural Information Processing Systems , 2002 .

[52]  David C. Van Essen,et al.  Application of Information Technology: An Integrated Software Suite for Surface-based Analyses of Cerebral Cortex , 2001, J. Am. Medical Informatics Assoc..

[53]  H. Critchley,et al.  Neural Activity in the Human Brain Relating to Uncertainty and Arousal during Anticipation , 2001, Neuron.

[54]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[55]  A. Young,et al.  Impaired recognition and experience of disgust following brain injury , 2000, Nature Neuroscience.

[56]  R. Peyron,et al.  Functional imaging of brain responses to pain. A review and meta-analysis (2000) , 2000, Neurophysiologie Clinique/Clinical Neurophysiology.

[57]  M. Posner,et al.  Cognitive and emotional influences in anterior cingulate cortex , 2000, Trends in Cognitive Sciences.

[58]  J. Pardo,et al.  Functional neuroimaging of the olfactory system in humans. , 2000, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[59]  E. Reiman,et al.  Thermosensory activation of insular cortex , 2000, Nature Neuroscience.

[60]  Jianbo Shi,et al.  Learning Segmentation by Random Walks , 2000, NIPS.

[61]  M. Yașargil,et al.  Topographic anatomy of the insular region. , 1999, Journal of neurosurgery.

[62]  R J Zatorre,et al.  Human cortical gustatory areas: a review of functional neuroimaging data. , 1999, Neuroreport.

[63]  A. Young,et al.  Neural responses to facial and vocal expressions of fear and disgust , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[64]  J. Pardo,et al.  Aversive gustatory stimulation activates limbic circuits in humans. , 1998, Brain : a journal of neurology.

[65]  M. Lowe,et al.  Functional Connectivity in Single and Multislice Echoplanar Imaging Using Resting-State Fluctuations , 1998, NeuroImage.

[66]  Anthony K. P. Jones,et al.  Pain processing during three levels of noxious stimulation produces differential patterns of central activity , 1997, Pain.

[67]  D. Perrett,et al.  A specific neural substrate for perceiving facial expressions of disgust , 1997, Nature.

[68]  S. Minoshima,et al.  Cerebral processing of acute skin and muscle pain in humans. , 1997, Journal of neurophysiology.

[69]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[70]  J. R. Augustine Circuitry and functional aspects of the insular lobe in primates including humans , 1996, Brain Research Reviews.

[71]  R. Koeppe,et al.  Comparison of human cerebral activation pattern during cutaneous warmth, heat pain, and deep cold pain. , 1996, Journal of neurophysiology.

[72]  B. Biswal,et al.  Functional connectivity in the motor cortex of resting human brain using echo‐planar mri , 1995, Magnetic resonance in medicine.

[73]  B. Vogt,et al.  Contributions of anterior cingulate cortex to behaviour. , 1995, Brain : a journal of neurology.

[74]  Hisashi Ogawa,et al.  Gustatory cortex of primates: anatomy and physiology , 1994, Neuroscience Research.

[75]  Alan C. Evans,et al.  Distributed processing of pain and vibration by the human brain , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[76]  G. Rizzolatti,et al.  Corticocortical connections of area F3 (SMA‐proper) and area F6 (pre‐SMA) in the macaque monkey , 1993, The Journal of comparative neurology.

[77]  David P. Friedman,et al.  A modality-specific somatosensory area within the insula of the rhesus monkey , 1993, Brain Research.

[78]  T. R. Scott,et al.  Gustatory neural coding in the monkey cortex: stimulus intensity. , 1991, Journal of neurophysiology.

[79]  E T Rolls,et al.  Gustatory responses of single neurons in the insula of the macaque monkey. , 1990, Journal of neurophysiology.

[80]  J. Talairach,et al.  Co-Planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging , 1988 .

[81]  D. Pandya,et al.  Cingulate cortex of the rhesus monkey: II. Cortical afferents , 1987, The Journal of comparative neurology.

[82]  David P. Friedman,et al.  Cortical connections of the somatosensory fields of the lateral sulcus of macaques: Evidence for a corticolimbic pathway for touch , 1986, The Journal of comparative neurology.

[83]  M. Mesulam,et al.  Insula of the old world monkey. Architectonics in the insulo‐orbito‐temporal component of the paralimbic brain , 1982, The Journal of comparative neurology.

[84]  M. Mesulam,et al.  Insula of the old world monkey. III: Efferent cortical output and comments on function , 1982, The Journal of comparative neurology.

[85]  M. Mesulam,et al.  Insula of the old world monkey. II: Afferent cortical input and comments on the claustrum , 1982, The Journal of comparative neurology.