Molecular analysis of blood with micro-/nanoscale field-effect-transistor biosensors.

Rapid and accurate molecular blood analysis is essential for disease diagnosis and management. Field-effect transistor (FET) biosensors are a type of device that promise to advance blood point-of-care testing by offering desirable characteristics such as portability, high sensitivity, brief detection time, low manufacturing cost, multiplexing, and label-free detection. By controlling device parameters, desired FET biosensor performance is obtained. This review focuses on the effects of sensing environment, micro-/nanoscale device structure, operation mode, and surface functionalization on device performance and long-term stability.

[1]  Jin-Woo Han,et al.  Double-gate nanowire field effect transistor for a biosensor. , 2010, Nano letters.

[2]  Y. Sohn,et al.  Development of FET-type albumin sensor for diagnosing nephritis. , 2008, Biosensors & bioelectronics.

[3]  K. West,et al.  Differential adhesion of amino acids to inorganic surfaces , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[4]  N. F. Starodub,et al.  Enzymatic Biosensor Based on the ISFET and Photopolymeric Membrane for the Determinaion of Urea , 2004 .

[5]  Chao Li,et al.  Complementary detection of prostate-specific antigen using In2O3 nanowires and carbon nanotubes. , 2005, Journal of the American Chemical Society.

[6]  Cees Dekker,et al.  Identifying the mechanism of biosensing with carbon nanotube transistors. , 2008, Nano letters.

[7]  Tomoya Tanaka,et al.  Enzyme-based Field-Effect Transistor for Adenosine Triphosphate (ATP) Sensing , 2007, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[8]  Yu Ishige,et al.  Extended-gate FET-based enzyme sensor with ferrocenyl-alkanethiol modified gold sensing electrode. , 2009, Biosensors & bioelectronics.

[9]  David J. Mooney,et al.  Label-free biomarker detection from whole blood , 2009, 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology.

[10]  Larry J Kricka,et al.  Improving healthcare accessibility through point-of-care technologies. , 2007, Clinical chemistry.

[11]  Charles M. Lieber,et al.  Subthreshold regime has the optimal sensitivity for nanowire FET biosensors. , 2010, Nano letters.

[12]  Curtis C. Johnson,et al.  Potassium ion-sensitive field effect transistor , 1975 .

[13]  M.A. Alam,et al.  Design Considerations of Silicon Nanowire Biosensors , 2007, IEEE Transactions on Electron Devices.

[14]  J. Riu,et al.  Carbon nanotube field effect transistors for the fast and selective detection of human immunoglobulin G. , 2008, The Analyst.

[15]  Yu-Lin Wang,et al.  Enzyme-based lactic acid detection using AlGaN /GaN high electron mobility transistors with ZnO nanorods grown on the gate region , 2008 .

[16]  Muhammad A. Alam,et al.  Theory of "Selectivity" of label-free nanobiosensors: A geometro-physical perspective. , 2010, Journal of applied physics.

[17]  Jeng-Tzong Sheu,et al.  Detection of an uncharged steroid with a silicon nanowire field-effect transistor , 2009 .

[18]  D. Chan,et al.  Enzymes and related proteins as cancer biomarkers: a proteomic approach. , 2007, Clinica chimica acta; international journal of clinical chemistry.

[19]  Chao Li,et al.  A nanoelectronic enzyme-linked immunosorbent assay for detection of proteins in physiological solutions. , 2010, Small.

[20]  Mark A. Reed,et al.  Label-free immunodetection with CMOS-compatible semiconducting nanowires , 2007, Nature.

[21]  Yoshiaki Hirano,et al.  Evaluation of the MOSFET-type enzyme biosensor , 2004, SPIE Micro + Nano Materials, Devices, and Applications.

[22]  Yu Qin,et al.  Functional nanoprobes for ultrasensitive detection of biomolecules. , 2010, Chemical Society reviews.

[23]  C. Lieber,et al.  Design and Implementation of Functional Nanoelectronic Interfaces With Biomolecules, Cells, and Tissue Using Nanowire Device Arrays , 2010, IEEE Transactions on Nanotechnology.

[24]  Seunghun Hong,et al.  Enhancement of sensitivity and specificity by surface modification of carbon nanotubes in diagnosis of prostate cancer based on carbon nanotube field effect transistors. , 2009, Biosensors & bioelectronics.

[25]  Christofer Toumazou,et al.  Using transistors to linearise biochemistry , 2007 .

[26]  D. Janes,et al.  Device considerations for development of conductance-based biosensors. , 2009, Journal of applied physics.

[27]  M. Reed,et al.  Semiconducting Nanowire Field-Effect Transistor Biomolecular Sensors , 2008, IEEE Transactions on Electron Devices.

[28]  Gerhard Klimeck,et al.  Computational aspects of the three-dimensional feature-scale simulation of silicon-nanowire field-effect sensors for DNA detection , 2007 .

[29]  N. Lee,et al.  Organic electrochemical transistor based immunosensor for prostate specific antigen (PSA) detection using gold nanoparticles for signal amplification. , 2010, Biosensors & bioelectronics.

[30]  J. Chou,et al.  Sensing Properties and Stability Analysis of Miniaturized Dual-Mode Uric Acid Biosensor Based on TiO 2 Extended Gate Field Effect Transistor , 2008 .

[31]  J. Beilby,et al.  The cost-effectiveness of point of care testing in a general practice setting: results from a randomised controlled trial , 2010, BMC health services research.

[32]  G. Mor,et al.  Development and Validation of a Protein -based Signature for the Detection of Ovarian Cancer Ovarian Cancer Early Detection Leptin Prolactin Osteopontin Macrophage Inhibitory Factor (mif) Insulin-like Growth Factor-ii (igf-ii) Multiplex , 2022 .

[33]  Jonghyun Go,et al.  Statistical interpretation of "femtomolar" detection. , 2009, Applied physics letters.

[34]  J. Gong,et al.  Label-free attomolar detection of proteins using integrated nanoelectronic and electrokinetic devices. , 2010, Small.

[35]  T. Cui,et al.  Flexible and disposable immunosensors based on layer-bylayer self-assembled carbon nanotubes and biomolecules , 2008, 2008 IEEE 21st International Conference on Micro Electro Mechanical Systems.

[36]  Gengfeng Zheng,et al.  Nanowire sensors for medicine and the life sciences. , 2006, Nanomedicine.

[37]  Yu-Lin Wang,et al.  c-erbB-2 sensing using AlGaN∕GaN high electron mobility transistors for breast cancer detection , 2008 .

[38]  Moon-Ho Jo,et al.  Electrical detection of VEGFs for cancer diagnoses using anti-vascular endotherial growth factor aptamer-modified Si nanowire FETs. , 2009, Biosensors & bioelectronics.

[39]  Hee Cheul Choi,et al.  Network single-walled carbon nanotube-field effect transistors (SWNT-FETs) with increased Schottky contact area for highly sensitive biosensor applications. , 2006, Journal of the American Chemical Society.

[40]  Fred J Sigworth,et al.  Importance of the Debye screening length on nanowire field effect transistor sensors. , 2007, Nano letters.

[41]  Pierre Temple-Boyer,et al.  Modelling of urea-EnFETs for haemodialysis applications , 2008 .

[42]  C. Li,et al.  Selective functionalization of In2O3 nanowire mat devices for biosensing applications. , 2005, Journal of the American Chemical Society.

[43]  J. Sheu,et al.  A possibility of detection of the non-charge based analytes using ultra-thin body field-effect transistors. , 2008, Biosensors & bioelectronics.

[44]  Tianhong Cui,et al.  A thin-film transistor based acetylcholine sensor using self-assembled carbon nanotubes and SiO2 nanoparticles , 2008 .

[45]  Bhusana Premanode,et al.  A novel, low power biosensor for real time monitoring of creatinine and urea in peritoneal dialysis , 2006 .

[46]  Shanhong Xia,et al.  A micro-potentiometric hemoglobin immunosensor based on electropolymerized polypyrrole-gold nanoparticles composite. , 2009, Biosensors & bioelectronics.

[47]  John C. Roberts,et al.  Electrical detection of kidney injury molecule-1 with AlGaN∕GaN high electron mobility transistors , 2007 .

[48]  Piet Bergveld,et al.  Thirty years of ISFETOLOGY ☆: What happened in the past 30 years and what may happen in the next 30 years , 2003 .

[49]  B Danielsson,et al.  The region ion sensitive field effect transistor, a novel bioelectronic nanosensor. , 2007, Biosensors & bioelectronics.

[50]  E. Schleicher,et al.  Inflammation markers in point-of-care testing (POCT) , 2009, Analytical and bioanalytical chemistry.

[51]  S. Sasa,et al.  Characteristics of Enzyme-Based ZnO/Zn0.7Mg0.3O Heterojunction Field-Effect Transistor as Glucose Sensor , 2009 .

[52]  Wooyoung Lee,et al.  P-type Si-nanowire-based Field-effect Transistors for Electric Detection of a Biomarker: Matrix Metalloproteinase-9 , 2009 .

[53]  Yu Ishige,et al.  A novel enzyme immunoassay based on potentiometric measurement of molecular adsorption events by an extended-gate field-effect transistor sensor. , 2007, Biosensors & bioelectronics.

[54]  Biosensors using the Si nanochannel junction-isolated from the Si bulk substrate , 2009 .

[55]  C. Li,et al.  Differentiation of oxidized low density lipoproteins by nanosensors , 2006 .

[56]  C. Lieber,et al.  Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species , 2001, Science.

[57]  Chan Woo Park,et al.  Direct label-free electrical immunodetection in human serum using a flow-through-apparatus approach with integrated field-effect transistors. , 2010, Biosensors & bioelectronics.

[58]  W. Lu,et al.  Detection of clinically relevant levels of protein analyte under physiologic buffer using planar field effect transistors. , 2008, Biosensors & bioelectronics.

[59]  B. Liedberg,et al.  Aligned carbon nanotubes on quartz substrate for liquid gated biosensing. , 2010, Biosensors & bioelectronics.

[60]  Muhammad A. Alam,et al.  Performance limits of nanobiosensors , 2006 .

[61]  C P Price,et al.  Point of Care Testing , 1999, BMJ : British Medical Journal.

[62]  J. Beilby,et al.  A pragmatic cluster randomised controlled trial to evaluate the safety, clinical effectiveness, cost effectiveness and satisfaction with point of care testing in a general practice setting – rationale, design and baseline characteristics , 2008, Trials.

[63]  Carbon nanotube-based biosensor for detection of matrix metallopeptidase-9 and S-100B , 2009 .

[64]  John C. Roberts,et al.  Prostate specific antigen detection using AlGaN∕GaN high electron mobility transistors , 2007 .

[65]  Larry J Kricka,et al.  Prospects for nano- and microtechnologies in clinical point-of-care testing. , 2007, Lab on a chip.

[66]  Chan Woo Park,et al.  Ultrasensitive, label-free, and real-time immunodetection using silicon field-effect transistors , 2007 .

[67]  Kazuhiko Matsumoto,et al.  Application of carbon nanotubes for detecting anti-hemagglutinins based on antigen-antibody interaction. , 2005, Biosensors & bioelectronics.

[68]  Shyamsunder Erramilli,et al.  Surface-modified silicon nano-channel for urea sensing , 2008 .

[69]  R. Schasfoort,et al.  TUTORIAL REVIEW , 2001 .

[70]  Young Soo Park,et al.  Measurements of serum C-reactive protein levels in patients with gastric cancer and quantification using silicon nanowire arrays. , 2010, Nanomedicine : nanotechnology, biology, and medicine.

[71]  Sang Jun Sim,et al.  Ultrasensitive carbon nanotube-based biosensors using antibody-binding fragments. , 2008, Analytical biochemistry.

[72]  Jong-Heon Yang,et al.  Control of channel doping concentration for enhancing the sensitivity of ‘top-down’ fabricated Si nanochannel FET biosensors , 2009, Nanotechnology.

[73]  P Bergveld,et al.  Highly sensitive glucose sensor based on work function changes measured by an EMOSFET. , 2003, The Analyst.

[74]  J. Jang,et al.  A Novel Sensor Platform Based on Aptamer‐Conjugated Polypyrrole Nanotubes for Label‐Free Electrochemical Protein Detection , 2008, Chembiochem : a European journal of chemical biology.

[75]  C. Su,et al.  Ultrasensitive detection of dopamine using a polysilicon nanowire field-effect transistor. , 2008, Chemical communications.

[76]  Po-Chiang Chen,et al.  A calibration method for nanowire biosensors to suppress device-to-device variation. , 2009, ACS nano.

[77]  Gengfeng Zheng,et al.  Frequency domain detection of biomolecules using silicon nanowire biosensors. , 2010, Nano letters.

[78]  Aviad Hai,et al.  Acetylcholinesterase-ISFET based system for the detection of acetylcholine and acetylcholinesterase inhibitors. , 2006, Biosensors & bioelectronics.

[79]  Jing-Juan Xu,et al.  A sensitive biosensor for lactate based on layer-by-layer assembling MnO2 nanoparticles and lactate oxidase on ion-sensitive field-effect transistors. , 2005, Chemical communications.

[80]  G Borghs,et al.  Glutamate sensing with enzyme-modified floating-gate field effect transistors. , 2009, Biosensors & bioelectronics.

[81]  B. J. Venton,et al.  Review: Carbon nanotube based electrochemical sensors for biomolecules. , 2010, Analytica chimica acta.

[82]  J. Riu,et al.  Detection of Human Immunoglobulin G at Physiological Conditions with Chemically Functionalizated Carbon Nanotube Field Effect Transistors , 2008 .

[83]  Seon Joo Park,et al.  A high-performance VEGF aptamer functionalized polypyrrole nanotube biosensor. , 2010, Biomaterials.

[84]  Hyeonseok Yoon,et al.  Field-effect-transistor sensor based on enzyme-functionalized polypyrrole nanotubes for glucose detection. , 2008, The journal of physical chemistry. B.

[85]  Moon-Ho Jo,et al.  The fabrication, characterization and application of aptamer-functionalized Si-nanowire FET biosensors , 2009, Nanotechnology.

[86]  B. S. Kang,et al.  Electrical detection of biomaterials using AlGaN/GaN high electron mobility transistors , 2008 .

[87]  J. Shappir,et al.  Direct detection of molecular biorecognition by dipole sensing mechanism. , 2009, Journal of the American Chemical Society.

[88]  P. Sheehan,et al.  Detection limits for nanoscale biosensors. , 2005, Nano letters.

[89]  Yu Ishige,et al.  Enzyme immunoassay using a reusable extended-gate field-effect-transistor sensor with a ferrocenylalkanethiol-modified gold electrode. , 2008, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[90]  Ruth Etzioni,et al.  Early detection: The case for early detection , 2003, Nature Reviews Cancer.

[91]  Rebecca Lynn Johnson,et al.  Enzyme field effect transistor (ENFET) for estimation of triglycerides using magnetic nanoparticles. , 2008, Biosensors & bioelectronics.

[92]  P. Brissot,et al.  Electrical detection of very low content of transferrin in view of iron metabolism characterization , 2008, 2008 3rd International Conference on Sensing Technology.

[93]  Gengfeng Zheng,et al.  Multiplexed electrical detection of cancer markers with nanowire sensor arrays , 2005, Nature Biotechnology.

[94]  E. Tamiya,et al.  Aptamer‐Based Label‐Free Immunosensors Using Carbon Nanotube Field‐Effect Transistors , 2009 .

[95]  S. Erramilli,et al.  Silicon-based nanochannel glucose sensor , 2008, 0802.1721.

[96]  Ajay Agarwal,et al.  Label-free electrical detection of cardiac biomarker with complementary metal-oxide semiconductor-compatible silicon nanowire sensor arrays. , 2009, Analytical chemistry.

[97]  P Bergveld,et al.  Development of an ion-sensitive solid-state device for neurophysiological measurements. , 1970, IEEE transactions on bio-medical engineering.

[98]  Muhammad A. Alam,et al.  Screening-limited response of nanobiosensors. , 2007, Nano letters.

[99]  M. Stutzmann,et al.  Direct biofunctionalization of semiconductors: A survey , 2006 .

[100]  E. Lenters-Westra,et al.  Six of eight hemoglobin A1c point-of-care instruments do not meet the general accepted analytical performance criteria. , 2010, Clinical chemistry.

[101]  John C. Roberts,et al.  Enzymatic glucose detection using ZnO nanorods on the gate region of AlGaN∕GaN high electron mobility transistors , 2007 .

[102]  Itamar Willner,et al.  Analysis of dopamine and tyrosinase activity on ion-sensitive field-effect transistor (ISFET) devices. , 2007, Chemistry.

[103]  Rui Zhang,et al.  Real-Time, Label-Free Detection of Biological Entities Using Nanowire-Based FETs , 2008, IEEE Transactions on Nanotechnology.

[104]  Joseph Wang,et al.  Electrochemical biosensors: towards point-of-care cancer diagnostics. , 2006, Biosensors & bioelectronics.

[105]  Tatsuro Goda,et al.  Detection of microenvironmental changes induced by protein adsorption onto self-assembled monolayers using an extended gate-field effect transistor. , 2010, Analytical chemistry.