On the analytic theory of isotropic ternary quadratic forms

[1]  Nvmerorvm Congrventia,et al.  Disquisitiones Arithmeticae , 2017 .

[2]  E. Sofos Uniformly counting rational points on conics , 2013, 1305.0374.

[3]  A. Deitmar SPECTRAL METHODS OF AUTOMORPHIC FORMS (2nd edn) (Graduate Studies in Mathematics 53) , 2003 .

[4]  M. Borovoi On Representations of Integers by Indefinite Ternary Quadratic Forms , 2000, math/0006141.

[5]  Z. Rudnick,et al.  Hardy-Littlewood varieties and semisimple groups , 1995 .

[6]  Emmanuel Peyre,et al.  HAUTEURS ET MESURES DE TAMAGAWA SUR LES VARIÉTÉS DE FANO , 1995 .

[7]  J. Franke,et al.  Rational points of bounded height on Fano varieties , 1989 .

[8]  Jeremy Gray,et al.  Number theory: An approach through history; from Hammurapi to Legendre , 1986 .

[9]  M. Kneser Darstellungsmaße indefiniter quadratischer Formen , 1961 .

[10]  M. Kneser Klassenzahlen indefiniter quadratischer Formen in drei oder mehr Veränderlichen , 1956 .

[11]  C. L. Siegel On the Theory of Indefinite Quadratic Forms , 1944 .

[12]  Leonard Eugene Dickson,et al.  Studies in the theory of numbers , 1931 .

[13]  A. Markoff,et al.  Sur les formes quadratiques ternaires indéfinies , 1879 .

[14]  H. Iwaniec,et al.  Bounds for automorphic L-functions , 2005 .

[15]  H. Iwaniec Spectral methods of automorphic forms , 2002 .

[16]  D. R. Heath-Brown,et al.  A new form of the circle method, and its application to quadratic forms. , 1996 .

[17]  P. Sarnak,et al.  Density of integer points on affine homogeneous varieties , 1993 .

[18]  P. Sarnak,et al.  A proof of Siegel's weight formula , 1991 .

[19]  W. Magnus Noneuclidean tesselations and their groups , 1974 .

[20]  N. J. Princeton Über die analytische Theorie der quadratischen Formen II , 1966 .

[21]  G. Watson LECTURES ON THE ANALYTICAL THEORY OF QUADRATIC FORMS , 1964 .

[22]  Vorlesungen über die Theorie der automorphen Funktionen , 1914 .

[23]  A. Meyer Ueber die Klassenanzahl derjenigen ternären quadratischen Formen, durch welche die Null rational darstellbar ist. , 1885 .