Wireless Multiple Access Communications Using Collision Frequency Shift Keying

Abstract : This report investigates the design and performance of a novel wireless multiple access scheme based on collision frequency shift keying (CFSK). The CFSK system has been shown to have a greater capacity than a comparable CDMA system. However, the optimal multiuser receiver for the CFSK system has complexity that is exponential in the number of users, Several suboptimal reduced complexity receivers for the CFSK system are developed and their performance evaluated via computer simulation. These suboptimal receivers are shown via computer simulation to have performance close to that of the optimal receiver. These results indicate that CFSK is a promising system for ad hoc communications networks that cannot use a highly coordinated system.

[1]  James L. Massey,et al.  The collision channel without feedback , 1985, IEEE Trans. Inf. Theory.

[2]  Jack K. Wolf,et al.  On the T-user M-frequency noiseless multiple-access channel with and without intensity information , 1981, IEEE Trans. Inf. Theory.

[3]  Fredrik Brannstrom,et al.  Trellis Code Multiple Access (TCMA) - Detectors and Capacity Considerations , 2000 .

[4]  Paul D. Alexander,et al.  A linear receiver for coded multiuser CDMA , 1997, IEEE Trans. Commun..

[5]  Alex J. Grant,et al.  Collision-type multiple-user communications , 1997, IEEE Trans. Inf. Theory.

[6]  Stephen G. Wilson,et al.  Multiuser ML sequence estimator for convolutionally coded asynchronous DS-CDMA systems , 1996, IEEE Trans. Commun..

[7]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[8]  E. J. Weldon Coding for a Multiple-Access Channel , 1978, Inf. Control..

[9]  J. L. Massey,et al.  Convolutional codes over rings , 1989 .

[10]  C. Schlegel,et al.  Iterative multiuser detection of a multiple access FSK system , 1997, Proceedings of IEEE International Symposium on Information Theory.

[11]  A. Grant,et al.  Convergence of non-binary iterative decoding , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).

[12]  Joseph Y. N. Hui,et al.  Throughput analysis for code division multiple accessing of the spread spectrum channel , 1984, IEEE Transactions on Vehicular Technology.

[13]  E. J. Weldon,et al.  Coding for T-user multiple-access channels , 1979, IEEE Trans. Inf. Theory.

[14]  G. David Forney,et al.  Convolutional codes I: Algebraic structure , 1970, IEEE Trans. Inf. Theory.

[15]  Masoud Salehi,et al.  Communication Systems Engineering , 1994 .

[16]  Thomas Mittelholzer Convolutional codes over rings and the two chain conditions , 1997, Proceedings of IEEE International Symposium on Information Theory.

[17]  James L. Massey,et al.  Optimum sequence multisets for synchronous code-division multiple-access channels , 1994, IEEE Trans. Inf. Theory.

[18]  Kenneth Frank Smolik,et al.  Applications Of Cdma In Wireless/Personal Communications , 1996 .

[19]  U. P. Odenwalder Dual-K Convolutional Codes for Noncoherently Demodulated Channels , 1976 .

[20]  Jens Berkmann On turbo decoding of nonbinary codes , 1998, IEEE Communications Letters.

[21]  Norman M. Abramson,et al.  Development of the ALOHANET , 1985, IEEE Trans. Inf. Theory.

[22]  C. Berrou,et al.  Non-binary convolutional codes for turbo coding , 1999 .

[23]  Pierre R. Chevillat N-user trellis coding for a class of multiple-access channels , 1981, IEEE Trans. Inf. Theory.

[24]  Lance C. Pérez,et al.  A CFSK system with iterative detection , 2004, IEEE Global Telecommunications Conference, 2004. GLOBECOM '04..

[25]  Peter Mathys,et al.  A class of codes for a T active users out of N multiple-access communication system , 1990, IEEE Trans. Inf. Theory.

[26]  William E. Ryan,et al.  Two classes of convolutional codes over GF(q) for q -ary orthogonal signaling , 1991, IEEE Trans. Commun..

[27]  Hideki Imai,et al.  Multiuser detection scheme based on canceling cochannel interference for MFSK/FH-SSMA system , 1994, IEEE J. Sel. Areas Commun..

[28]  Alexander J. Grant,et al.  Multiple User Information Theory and Coding , 1996 .

[29]  John Cocke,et al.  Optimal decoding of linear codes for minimizing symbol error rate (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[30]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[31]  Patrick Robertson,et al.  Illuminating the structure of code and decoder of parallel concatenated recursive systematic (turbo) codes , 1994, 1994 IEEE GLOBECOM. Communications: The Global Bridge.

[32]  Rolf Johannesson,et al.  Fundamentals of Convolutional Coding , 1999 .

[33]  Thomas H. E. Ericson,et al.  Superimposed codes in the Hamming space , 1994, IEEE Trans. Inf. Theory.

[34]  John G. Proakis,et al.  Digital Communications , 1983 .

[35]  Sergio Verdu,et al.  Multiuser Detection , 1998 .

[36]  Daniel J. Costello,et al.  Binary convolutional codes for a multiple-access channel (Corresp.) , 1979, IEEE Trans. Inf. Theory.

[37]  Pingzhi Fan,et al.  Superimposed codes for the multiaccess binary adder channel , 1995, IEEE Trans. Inf. Theory.

[38]  P. Robertson,et al.  A novel bandwidth efficient coding scheme employing turbo codes , 1996, Proceedings of ICC/SUPERCOMM '96 - International Conference on Communications.

[39]  U. Timor Improved decoding Scheme for frequency-hopped multilevel FSK system , 1980, The Bell System Technical Journal.