Ultrafast transient liquid assisted growth of high current density superconducting films

[1]  H. Higley,et al.  Engineering current density over 5 kA mm−2 at 4.2 K, 14 T in thick film REBCO tapes , 2018, Superconductor Science and Technology.

[2]  L. Schultz,et al.  Influence of artificial pinning centers on structural and superconducting properties of thick YBCO films on ABAD-YSZ templates , 2018 .

[3]  T. Puig,et al.  Epitaxial YBa2Cu3O7−x nanocomposite films and coated conductors from BaMO3 (M = Zr, Hf) colloidal solutions , 2018 .

[4]  S. Awaji,et al.  Tuning nanoparticle size for enhanced functionality in perovskite thin films deposited by metal organic deposition , 2017 .

[5]  A. Vasiliev,et al.  Introduction of BaSnO3 and BaZrO3 artificial pinning centres into 2G HTS wires based on PLD-GdBCO films. Phase I of the industrial R&D programme at SuperOx , 2017 .

[6]  J. MacManus‐Driscoll,et al.  Materials design for artificial pinning centres in superconductor PLD coated conductors , 2017 .

[7]  Bernat Mundet,et al.  Probing localized strain in solution-derived YB a 2 C u 3 O 7 -δ nanocomposite thin films , 2017 .

[8]  Hiroyuki Ohsaki,et al.  High-Temperature Superconductivity: A Roadmap for Electric Power Sector Applications, 2015–2030 , 2017, IEEE Transactions on Applied Superconductivity.

[9]  Amalia Ballarino,et al.  Double disordered YBCO coated conductors of industrial scale: high currents in high magnetic field , 2015 .

[10]  C. L. Phillips,et al.  Optimization of vortex pinning by nanoparticles using simulations of the time-dependent Ginzburg-Landau model , 2015, 1509.04212.

[11]  G. Hong,et al.  Strong pinning in very fast grown reactive co-evaporated GdBa2Cu3O7 coated conductors , 2014 .

[12]  V. Selvamanickam,et al.  Strongly enhanced vortex pinning from 4 to 77 K in magnetic fields up to 31 T in 15 mol.% Zr-added (Gd, Y)-Ba-Cu-O superconducting tapes , 2014 .

[13]  Xavier Obradors,et al.  Coated conductors for power applications: materials challenges , 2014 .

[14]  S. Yoo,et al.  RCE-DR, a novel process for coated conductor fabrication with high performance , 2014 .

[15]  X. Granados,et al.  Flexible manufacturing of functional ceramic coatings by inkjet printing , 2013 .

[16]  A. Barbier,et al.  Fast pole figure acquisition using area detectors at the DiffAbs beamline – Synchrotron SOLEIL , 2013 .

[17]  G. Deutscher,et al.  Nanoscale strain-induced pair suppression as a vortex-pinning mechanism in high-temperature superconductors. , 2012, Nature materials.

[18]  S. Pennycook,et al.  Strain-driven oxygen deficiency in self-assembled, nanostructured, composite oxide films. , 2011, ACS nano.

[19]  J. Tersoff,et al.  Formation of metastable liquid catalyst during subeutectic growth of germanium nanowires. , 2010, Nano letters.

[20]  M. Mauk,et al.  Liquid Phase Epitaxy of Electronic, Optical and Optoelectronic Materials , 2007 .

[21]  H. Scheel,et al.  Liquid Phase Epitaxy of Gallium Nitride , 2007 .

[22]  Q. Jia,et al.  ${\rm YBa}_{2}{\rm Cu}_{3}{\rm O}_{7}$ Coated Conductor Grown by Hybrid Liquid Phase Epitaxy , 2007, IEEE Transactions on Applied Superconductivity.

[23]  N. Mestres,et al.  Strong isotropic flux pinning in solution-derived YBa2Cu3O7-x nanocomposite superconductor films. , 2007, Nature materials.

[24]  Dominic F. Lee,et al.  High-Performance High-Tc Superconducting Wires , 2006, Science.

[25]  S. Horii,et al.  Possibility of High Deposition Rate in SmBa2Cu3Oy Films Prepared Using the Vapor–Liquid–Solid Growth Mode , 2006 .

[26]  Q. Jia,et al.  High critical current densities in YBa2Cu3O7−x films grown at high rates by hybrid liquid phase epitaxy , 2005 .

[27]  M. Sumption,et al.  Addition of nanoparticle dispersions to enhance flux pinning of the YBa2Cu3O7-x superconductor , 2004, Nature.

[28]  R. Tomov,et al.  Hybrid liquid phase epitaxy processes for YBa2Cu3O7 film growth , 2004 .

[29]  Q. X. Jia,et al.  Strongly enhanced current densities in superconducting coated conductors of YBa2Cu3O7–x + BaZrO3 , 2004, Nature materials.

[30]  W. Jo,et al.  High Rate in situ YBa_2Cu_3O_7 Film Growth Assisted by Liquid Phase , 2004 .

[31]  A. Chernov Notes on interface growth kinetics 50 years after Burton, Cabrera and Frank , 2004 .

[32]  Hideomi Koinuma,et al.  Vapor–liquid–solid tri-phase pulsed-laser epitaxy of RBa2Cu3O7−y single-crystal films , 2002 .

[33]  D. Larbalestier,et al.  High-Tc superconducting materials for electric power applications , 2001, Nature.

[34]  B. Glowacki,et al.  Study of the rate-limiting processes in liquid-phase epitaxy of thick YBaCuO films , 2000 .

[35]  H. Scheel,et al.  Solubility of YBa2Cu3O7−δ and Nd1+xBa2−xCu3O7±δ in the BaO/CuO flux , 1999 .

[36]  Y. Shiohara,et al.  Process for high growth rate and high superconducting properties of REBCO single crystals , 1998 .

[37]  Yuh Shiohara,et al.  Crystal growth of bulk high-Tc superconducting oxide materials , 1997 .

[38]  E. Specht,et al.  The BaOCuCuO system. Solid-liquid equilibria and thermodynamics of BaCuO2 and BaCu2O2☆ , 1995 .

[39]  J. Bravman,et al.  Phase equilibria in the YBCuO system and melt processing of Ag clad Y1Ba2Cu3O7−x tapes at reduced oxygen partial pressures , 1995 .

[40]  M. Nakamura,et al.  Wetting between prospective crucible materials and the Ba-Cu-O melt , 1994 .

[41]  Y. Shiohara,et al.  Solubility of RE elements into Ba−Cu−O melts and the enthalpy of dissolution , 1994 .

[42]  S. J. Rothman,et al.  Tracer diffusion of Ba and Y in YBa_2Cu_3O_x , 1992 .

[43]  Qiang Li,et al.  Growth of thick YBa2Cu3O7 layers via a barium fluoride process , 2012 .