Anderson localization for the 1-D discrete Schrödinger operator with two-frequency potential

[1]  J. Fröhlich,et al.  Localization for a class of one dimensional quasi-periodic Schrödinger operators , 1990 .

[2]  Y. Sinai Anderson localization for one-dimensional difference Schrödinger operator with quasiperiodic potential , 1987 .

[3]  Wolff,et al.  Some rigorous results for the Anderson model. , 1985, Physical review letters.

[4]  F. Martinelli,et al.  Constructive proof of localization in the Anderson tight binding model , 1985 .

[5]  L. Pastur,et al.  The positivity of the Lyapunov exponent and the absence of the absolutely continuous spectrum for the almost‐Mathieu equation , 1984 .

[6]  J. Fröhlich,et al.  A rigorous approach to Anderson localization , 1984 .

[7]  E. Scoppola,et al.  Localization inv-dimensional incommensurate structures , 1983 .

[8]  R. Lima,et al.  A metal-insulator transition for the almost Mathieu model , 1983 .

[9]  J. Fröhlich,et al.  Absence of diffusion in the Anderson tight binding model for large disorder or low energy , 1983 .

[10]  B. Simon,et al.  Almost periodic Schrödinger operators II. The integrated density of states , 1983 .

[11]  R. Carmona Exponential localization in one dimensional disordered systems , 1982 .

[12]  Hervé Kunz,et al.  Sur le spectre des opérateurs aux différences finies aléatoires , 1980 .

[13]  L. Pastur,et al.  A pure point spectrum of the stochastic one-dimensional schrödinger operator , 1977 .

[14]  R. Borland The nature of the electronic states in disordered one-dimensional systems , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[15]  Nevill Mott,et al.  The theory of impurity conduction , 1961 .