A postprocessed error estimate and an adaptive procedure for the semidiscrete finite element method in dynamic analysis

In the paper we present a postprocessed type of a posteriori error estimate and a h-version adaptive procedure for the semidiscrete finite element method in dynamic analysis. In space the super-convergent patch recovery technique is used for determining higher-order accurate stresses and, thus, a spatial error estimate. In time a postprocessing technique is developed for obtaining a local error estimate for one step time integration schemes (the HHT-α method). Coupling the error estimate with a mesh generator, a h-version adaptive finite element procedure is presented for two-dimensional dynamic analysis. It updates the spatial mesh and time step automatically so that the discretization errors are controlled within specified tolerances. Numerical studies on different problems are presented for demonstrating the performances of the proposed adaptive procedure.

[1]  T. Belytschko,et al.  H-adaptive finite element methods for dynamic problems, with emphasis on localization , 1993 .

[2]  Nils-Erik Wiberg,et al.  A Posteriori Local Error Estimation and Adaptive Time-stepping for Newmark Integration in Dynamic Analysis , 1992 .

[3]  P. G. Bergan,et al.  An automatic time-stepping algorithm for dynamic problems , 1985 .

[4]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[5]  J. Tinsley Oden,et al.  Reliability in computational mechanics , 1990 .

[6]  K. C. Park,et al.  A variable-step central difference method for structural dynamics analysis- part 2. Implementation and performance evaluation , 1980 .

[7]  Thomas J. R. Hughes,et al.  Improved numerical dissipation for time integration algorithms in structural dynamics , 1977 .

[8]  I. Babuska,et al.  A‐posteriori error estimates for the finite element method , 1978 .

[10]  Nils-Erik Wiberg,et al.  Superconvergent patch recovery of finite‐element solution and a posteriori L2 norm error estimate , 1994 .

[11]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[12]  O. C. Zienkiewicz,et al.  Adaptive remeshing for compressible flow computations , 1987 .

[13]  Yi Min Xie,et al.  A simple error estimator and adaptive time stepping procedure for dynamic analysis , 1991 .

[14]  N. Wiberg,et al.  Error estimation and adaptivity in elastodynamics , 1992 .

[15]  Kenneth Eriksson,et al.  An adaptive finite element method for linear elliptic problems , 1988 .

[16]  Nils-Erik Wiberg,et al.  A Simple Local Error Estimator and an Adaptive Time-stepping Procedure for Direct Integration Method in Dynamic Analysis , 1993 .

[17]  Ling Fu Zeng,et al.  On adaptive finite element procedures for static and dynamic problems , 1991 .

[18]  C. W. Gear,et al.  Numerical initial value problem~ in ordinary differential eqttations , 1971 .

[19]  Nils-Erik Wiberg,et al.  Spatial mesh adaptation in semidiscrete finite element analysis of linear elastodynamic problems , 1992 .

[20]  Edward L. Wilson,et al.  An adaptive finite element technique for structural dynamic analysis , 1988 .

[21]  K. C. Park,et al.  A variable-step central difference method for structural dynamics analysis — part 1. Theoretical aspects , 1980 .

[22]  Germund Dahlquist On the control of the global error in stiff initial value problems , 1982 .

[23]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .

[24]  Nils-Erik Wiberg,et al.  A Post-Processing Technique and an a Posteriori Error Estimate for the Newmark Method in Dynamic Analysis , 1993 .

[25]  Nils-Erik Wiberg,et al.  Patch recovery based on superconvergent derivatives and equilibrium , 1993 .