Environmental Dependence of Properties of Galaxies in the Sloan Digital Sky Survey

We investigate the dependence of physical properties of galaxies brighter than Mr = -18.0 + 5 log h in the Sloan Digital Sky Survey (SDSS) on environment, as measured by local density using an adaptive smoothing kernel. We find that variations of galaxy properties with environment are almost entirely due to the dependence of morphology and luminosity on environment. Because galaxy properties depend not only on luminosity but also on morphology, it is clear that galaxy properties cannot be determined solely by dark halo mass. When morphology and luminosity are fixed, other physical properties, such as color, color gradient, concentration, size, velocity dispersion, and star formation rate, are nearly independent of local density, without any break or feature. The only feature is the sharp decrease of the late-type fraction above the critical luminosity of about Mr = -21.3 in the morphology versus luminosity relation. Weak residual dependences on environment include that of the color of late types (bluer at lower density) and of the L-σ relation of early types (larger dispersion at higher density for bright galaxies). The fraction of galaxies with early morphological type is a monotonically increasing function of local density and luminosity. The morphology-density-luminosity relation, as measured in this work, should be a key constraint on galaxy formation models. We demonstrate that the dependence on environment of the morphology of galaxies originates from variations in density on effective Gaussian smoothing scales much smaller than 12 h-1 Mpc. We find that galaxy morphology varies both with density measured on an effective Gaussian smoothing scale of 4.7 h-1 Mpc and with distance to the nearest bright galaxy, particularly when the distance is about 0.2 h-1 Mpc. We propose as a mechanism that the morphology of galaxies in galaxy systems is transformed by the tidal force.

[1]  Changbom Park,et al.  Internal and Collective Properties of Galaxies in the Sloan Digital Sky Survey , 2006, astro-ph/0611607.

[2]  Jr.,et al.  The Sloan Digital Sky Survey monitor telescope pipeline , 2006, astro-ph/0608575.

[3]  M. Merchán,et al.  On the Luminosity Function of Galaxies in Groups in the Sloan Digital Sky Survey , 2006, astro-ph/0602405.

[4]  Walter A. Siegmund,et al.  # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE 2.5 m TELESCOPE OF THE SLOAN DIGITAL SKY SURVEY , 2005 .

[5]  G. Gavazzi,et al.  Environmental Effects on Late‐Type Galaxies in Nearby Clusters , 2006, astro-ph/0601108.

[6]  Changbom Park,et al.  Morphology Segregation of Galaxies in Color-Color Gradient Space , 2005, astro-ph/0511385.

[7]  R. Nichol,et al.  Evolution and Environment of Early-Type Galaxies , 2005, astro-ph/0509360.

[8]  H. Mo,et al.  Properties of galaxy groups in the Sloan Digital Sky Survey – I. The dependence of colour, star formation and morphology on halo mass , 2005, astro-ph/0509147.

[9]  J. Brinkmann,et al.  New York University Value-Added Galaxy Catalog: A Galaxy Catalog Based on New Public Surveys , 2005 .

[10]  Changbom Park,et al.  Topology Analysis of the Sloan Digital Sky Survey. I. Scale and Luminosity Dependence , 2005, astro-ph/0507059.

[11]  D. Christlein,et al.  Disentangling Morphology, Star Formation, Stellar Mass, and Environment in Galaxy Evolution , 2004, astro-ph/0411359.

[12]  S. Okamura,et al.  The Environmental Dependence of Galaxy Properties in the Local Universe: Dependences on Luminosity, Local Density, and System Richness , 2004, astro-ph/0411132.

[13]  J. Brinkmann,et al.  NYU-VAGC: a galaxy catalog based on new public surveys , 2004, astro-ph/0410166.

[14]  A. Szalay,et al.  SDSS data management and photometric quality assessment , 2004, astro-ph/0410195.

[15]  W. Voges,et al.  RASS-SDSS galaxy cluster survey. II. A unified picture of the cluster luminosity function , 2004, astro-ph/0410011.

[16]  J. Brinkmann,et al.  Spectroscopic Properties of Void Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0409074.

[17]  D. Madgwick,et al.  The 2dF Galaxy Redshift Survey: Luminosity functions by density environment and galaxy type , 2004, astro-ph/0407537.

[18]  R. Nichol,et al.  The Bimodal Galaxy Color Distribution: Dependence on Luminosity and Environment , 2004, astro-ph/0406266.

[19]  R. Nichol,et al.  The Three-Dimensional Power Spectrum of Galaxies from the Sloan Digital Sky Survey , 2003, astro-ph/0310725.

[20]  J. Brinkmann,et al.  The environmental dependence of the relations between stellar mass, structure, star formation and nuclear activity in galaxies , 2004, astro-ph/0402030.

[21]  Chisato Yamauchi,et al.  The morphology–density relation in the Sloan Digital Sky Survey , 2003, astro-ph/0312043.

[22]  R. Nichol,et al.  Galaxy ecology: groups and low-density environments in the SDSS and 2dFGRS , 2003, astro-ph/0311379.

[23]  R. Nichol,et al.  The 3D power spectrum of galaxies from the SDSS , 2003, astro-ph/0310725.

[24]  J. Brinkmann,et al.  Relationship between Environment and the Broadband Optical Properties of Galaxies in the Sloan Digital Sky Survey , 2003, astro-ph/0310453.

[25]  J. Brinkmann,et al.  The Luminosity Function of Void Galaxies in the Sloan Digital Sky Survey , 2003, astro-ph/0309728.

[26]  Neta A. Bahcall,et al.  The Dependence on Environment of the Color-Magnitude Relation of Galaxies , 2003, astro-ph/0307336.

[27]  Michael S. Vogeley,et al.  Photometric Properties of Void Galaxies in the Sloan Digital Sky Survey , 2003, 1205.1843.

[28]  Max Tegmark,et al.  A scheme to deal accurately and efficiently with complex angular masks in galaxy surveys , 2003, astro-ph/0306324.

[29]  F. M. Maley,et al.  An Efficient Targeting Strategy for Multiobject Spectrograph Surveys: the Sloan Digital Sky Survey “Tiling” Algorithm , 2001, astro-ph/0105535.

[30]  R. Nichol,et al.  Early-Type Galaxies in the Sloan Digital Sky Survey. I. The Sample , 2003 .

[31]  O. Gnedin Dynamical Evolution of Galaxies in Clusters , 2003, astro-ph/0302498.

[32]  R. Nichol,et al.  Early-Type Galaxies in the Sloan Digital Sky Survey. III. The Fundamental Plane , 2003, astro-ph/0301626.

[33]  D. Madgwick,et al.  The 2dF Galaxy Redshift Survey: the luminosity function of cluster galaxies , 2002, astro-ph/0212562.

[34]  Ž. Ivezić,et al.  Astrometric Calibration of the Sloan Digital Sky Survey , 2002, astro-ph/0211375.

[35]  Christopher J. Miller,et al.  Galaxy Star Formation as a Function of Environment in the Early Data Release of the Sloan Digital Sky Survey , 2002, astro-ph/0210193.

[36]  R. Nichol,et al.  The Broadband Optical Properties of Galaxies with Redshifts 0.02 < z < 0.22 , 2002, astro-ph/0209479.

[37]  V. Narayanan,et al.  Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Main Galaxy Sample , 2002, astro-ph/0206225.

[38]  Mamoru Doi,et al.  Estimating Fixed-Frame Galaxy Magnitudes in the Sloan Digital Sky Survey , 2002, astro-ph/0205243.

[39]  D. Madgwick,et al.  The 2dF Galaxy Redshift Survey: The environmental dependence of galaxy star formation rates near clusters , 2002, astro-ph/0203336.

[40]  S. Andreon,et al.  Dissecting the Luminosity Function of the Coma Cluster of Galaxies Using Canada-France-Hawaii Telescope Wide-Field Images , 2001, astro-ph/0111528.

[41]  M. Hudson,et al.  The Optical Luminosity Function of Virialized Systems , 2001, astro-ph/0109132.

[42]  V. Narayanan,et al.  Color Separation of Galaxy Types in the Sloan Digital Sky Survey Imaging Data , 2001, astro-ph/0107201.

[43]  J. Gunn,et al.  A Photometricity and Extinction Monitor at the Apache Point Observatory , 2001, astro-ph/0106511.

[44]  S.Cole,et al.  The 2dF Galaxy Redshift Survey: spectra and redshifts , 2001, astro-ph/0106498.

[45]  F. M. Maley,et al.  An Efficient Algorithm for Positioning Tiles in the Sloan Digital Sky Survey , 2001, astro-ph/0105535.

[46]  B. Moore,et al.  Do Clusters Contain a Large Population of Dwarf Galaxies? , 2000, astro-ph/0009230.

[47]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[48]  J. Navarro,et al.  The Origin of Star Formation Gradients in Rich Galaxy Clusters , 2000, astro-ph/0004078.

[49]  M. Whittle,et al.  The Dependence of Tidally-Induced Star Formation on Cluster Density , 2000, astro-ph/0002380.

[50]  S. Driver,et al.  Luminosity distributions within rich clusters - III. A comparative study of seven Abell/ACO clusters , 1998, astro-ph/9809206.

[51]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey Photometric Camera , 1998, astro-ph/9809085.

[52]  Y. Hashimoto,et al.  The Concentration-Density Relation of Galaxies in the Las Campanas Redshift Survey , 1998, astro-ph/9807275.

[53]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[54]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[55]  W. Harris,et al.  DWARF GALAXIES IN THE COMA CLUSTER. II. PHOTOMETRY AND ANALYSIS , 1997, astro-ph/9709074.

[56]  Liverpool John Moores University,et al.  The Edinburgh-Durham Southern Galaxy Catalogue — VIII. The cluster galaxy luminosity function , 1997, astro-ph/9705120.

[57]  D. Lambas,et al.  The Luminosity Function of Galaxies in Clusters , 1997 .

[58]  G. Lake,et al.  Morphological Transformation from Galaxy Harassment , 1997, astro-ph/9701211.

[59]  M. Fukugita,et al.  The Sloan Digital Sky Survey Photometric System , 1996 .

[60]  I. Jørgensen,et al.  Spectroscopy for E and S0 galaxies in nine clusters , 1995 .

[61]  W. Harris,et al.  Evidence for Steep Luminosity Functions in Clusters of Galaxies , 1995, astro-ph/9503109.

[62]  Changbom Park,et al.  Power spectrum, correlation function, and tests for luminosity bias in the CfA redshift survey , 1994 .

[63]  M. Postman,et al.  The morphology-density relation - The group connection , 1984 .

[64]  A. Dressler Galaxy morphology in rich clusters: Implications for the formation and evolution of galaxies , 1980 .

[65]  A. Sandage,et al.  Color--absolute magnitude relation for E and S0 galaxies. III. Fully corrected photometry for 405 galaxies: comparison of color distributions for E and S0 field and cluster galaxies. [Virgo, coma, centaurus, and fornax clusters] , 1978 .

[66]  J. Gott,et al.  The angular momentum of galaxies. , 1977 .

[67]  J. Gott,et al.  On the formation of spiral and elliptical galaxies. , 1975 .

[68]  Jr. Oemler Augustus The Systematic Properties of Clusters of Galaxies. Photometry of 15 Clusters , 1974 .

[69]  E. Hubble,et al.  No. 427. The velocity-distance relation among extra-galactic nebulae. , 1931 .

[70]  A. Biviano,et al.  RASS-SDSS galaxy cluster survey: IV. A ubiquitous dwarf galaxy population in clusters , 2006 .

[71]  John E. Davis,et al.  Sloan Digital Sky Survey: Early Data Release , 2002 .

[72]  H. Payne,et al.  Astronomical Data Analysis Software and Systems X , 2001 .

[73]  N. Trentham The dwarf galaxy population of the Coma cluster to MR=−11: a detailed description , 1998 .

[74]  J. Gunn,et al.  On the Infall of Matter into Clusters of Galaxies and Some Effects on Their Evolution , 1972 .