The importance of phylogenetic scale in tests of Bergmann's and Rapoport's rules: lessons from a clade of South American lizards

We tested for the occurrence of Bergmann's rule, the pattern of increasing body size with latitude, and Rapoport's rule, the positive relationship between geographical range size and latitude, in 34 lineages of Liolaemus lizards that occupy arid regions of the Andean foothills. We tested the climatic‐variability hypothesis (CVH) by examining the relationship between thermal tolerance breadth and distribution. Each of these analyses was performed varying the level of phylogenetic inclusiveness. Bergmann's rule and the CVH were supported, but Rapoport's rule was not. More variance in the data for Bergmann's rule and the CVH was explained using species belonging to the L. boulengeri series rather than all species, and inclusion of multiple outgroups tended to obscure these macroecological patterns. Evidence for Bergmann's rule and the predicted patterns from the CVH remained after application of phylogenetic comparative methods, indicating a greater role of ecological processes rather than phylogeny in shaping the current species distributions of these lizards.

[1]  K. S. Norris Color adaptation in desert reptiles and its thermal relationships , 1967 .

[2]  K. Gaston,et al.  Range size-body size relationships: evidence of scale dependence , 1996 .

[3]  J. Macey,et al.  Phylogenetic relationships in the iguanid lizard genus Liolaemus: multiple origins of viviparous reproduction and evidence for recurring Andean vicariance and dispersal , 2000 .

[4]  E. Abouheif A method for testing the assumption of phylogenetic independence in comparative data , 1999 .

[5]  F. H. Pough,et al.  Lizard Energetics and Diet , 1973 .

[6]  C M BOGERT,et al.  THERMOREGULATION IN REPTILES, A FACTOR IN EVOLUTION , 1949, Evolution; international journal of organic evolution.

[7]  Mark S. Boyce,et al.  Seasonality, Fasting Endurance, and Body Size in Mammals , 1985, The American Naturalist.

[8]  W. Porter,et al.  3. BIOPHYSICAL ANALYSES OF ENERGETICS, TIME-SPACE UTILIZATION, AND DISTRIBUTIONAL LIMITS , 1983 .

[9]  W. Rice ANALYZING TABLES OF STATISTICAL TESTS , 1989, Evolution; international journal of organic evolution.

[10]  K. Gaston,et al.  On the Heritability of Geographic Range Sizes , 2003, The American Naturalist.

[11]  C. Tracy,et al.  Recurrent evolution of herbivory in small, cold-climate lizards: breaking the ecophysiological rules of reptilian herbivory. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[12]  C. J. Bell THE SCALING OF THE THERMAL INERTIA OF LIZARDS , 1980 .

[13]  D. Jablonski,et al.  Heritability at the Species Level: Analysis of Geographic Ranges of Cretaceous Mollusks , 1987, Science.

[14]  I. Spellerberg Critical Minimum Temperatures of Reptiles , 1973 .

[15]  R. B. Cowles,et al.  A preliminary study of the thermal requirements of desert reptiles. Bulletin of the AMNH ; v. 83, article 5 , 1944 .

[16]  C. Feldman,et al.  BERGMANN'S RULE IN NONAVIAN REPTILES: TURTLES FOLLOW IT, LIZARDS AND SNAKES REVERSE IT , 2003, Evolution; international journal of organic evolution.

[17]  R. Etheridge,et al.  Two New Species of the Lizard Genus Liolaemus (Squamata: Liolaemidae) from Northern Patagonia, with Comments on Liolaemus rothi , 2003 .

[18]  D. Schluter,et al.  Using Phylogenies to Test Macroevolutionary Hypotheses of Trait Evolution in Cranes (Gruinae) , 1999, The American Naturalist.

[19]  K. G. Ashton Are ecological and evolutionary rules being dismissed prematurely? , 2001 .

[20]  Dawn M. Kaufman,et al.  THE GEOGRAPHIC RANGE: Size, Shape, Boundaries, and Internal Structure , 1996 .

[21]  M. C. Tracy,et al.  Is Bergmann’s Rule Valid for Mammals? , 2000, The American Naturalist.

[22]  G. C. Stevens The Elevational Gradient in Altitudinal Range: An Extension of Rapoport's Latitudinal Rule to Altitude , 1992, The American Naturalist.

[23]  BODY SIZE VARIATION AMONG MAINLAND POPULATIONS OF THE WESTERN RATTLESNAKE (CROTALUS VIRIDIS) , 2001, Evolution; international journal of organic evolution.

[24]  K. Nussear,et al.  05. Misconceptions about colour, infrared radiation, and energy exchange between animals and their environments , 2000 .

[25]  A. Helbig,et al.  EVOLUTION OF BREEDING DISTRIBUTIONS IN THE OLD WORLD LEAF WARBLERS (GENUS PHYLLOSCOPUS) , 1997, Evolution; international journal of organic evolution.

[26]  O. Pearson The effect of substrate and of skin color on thermoregulation of a lizard , 1977 .

[27]  J. Lawton,et al.  Latitudinal gradients in butterfly body sizes: is there a general pattern? , 1995, Oecologia.

[28]  Kevin J. Gaston,et al.  Elevation and climatic tolerance : a test using dung beetles , 1999 .

[29]  N. Loder,et al.  Geographic gradients in body size: a clarification of Bergmann's rule , 1999 .

[30]  G. Burghardt,et al.  To Bury in Sand: Phylogenetic Relationships among Lizard Species of the Boulengeri Group, Liolaemus (Reptilia: Squamata: Tropiduridae), Based on Behavioral Characters , 1998 .

[31]  F. C. James Geographic Size Variation in Birds and Its Relationship to Climate , 1970 .

[32]  J. H. Carothers,et al.  Thermal characteristics of ten Andean lizards of the genus Liolaemus in central Chile , 1997 .

[33]  H. Pörtner,et al.  Climate change and temperature-dependent biogeography: oxygen limitation of thermal tolerance in animals , 2001, Naturwissenschaften.

[34]  I. Spellerberg Temperature tolerances of Southeast Australian reptiles examined in relation to reptile thermoregulatory behaviour and distribution , 1972, Oecologia.

[35]  P. Stephens,et al.  Explaining Species Richness from Continents to Communities: The Time‐for‐Speciation Effect in Emydid Turtles , 2002, The American Naturalist.

[36]  K. G. Ashton Do amphibians follow Bergmann's rule? , 2002 .

[37]  J. Losos,et al.  The relationship between morphology, escape behaviour and microhabitat occupation in the lizard clade Liolaemus (Iguanidae: Tropidurinae * : Liolaemini) , 2004, Journal of evolutionary biology.

[38]  R. Reed Interspecific patterns of species richness, geographic range size, and body size among New World venomous snakes , 2003 .

[39]  T. Blackburn,et al.  Rapoport's rule: time for an epitaph? , 1998, Trends in ecology & evolution.

[40]  T. Blackburn,et al.  Latitude, elevation and body mass variation in Andean passerine birds , 2001 .

[41]  T. Best Relationships between abiotic variables and geographic variation in skulls of pumas (Puma concolor: Mammalia, Felidae) in North and South America , 1996 .

[42]  R. Etheridge Redescription of Ctenoblepharys adspersa Tschudi, 1845, and the taxonomy of Liolaeminae (Reptilia, Squamata, Tropiduridae). American Museum novitates ; no. 3142 , 1995 .

[43]  R. Etheridge A REVIEW OF LIZARDS OF THE LIOLAEMUS WIEGMANNII GROUP (SQUAMATA, IGUANIA, TROPIDURIDAE), AND A HISTORY OF MORPHOLOGICAL CHANGE IN THE SAND-DWELLING SPECIES , 2000 .

[44]  J. M. Cei Reptiles del noroeste, nordeste y este de la Argentina : herpetofauna de las selvas subtropicales, Puna y Pampas , 1993 .

[45]  David Posada,et al.  MODELTEST: testing the model of DNA substitution , 1998, Bioinform..

[46]  V. H. Hutchison,et al.  The critical thermal maximum: history and critique , 1997 .

[47]  K. Gaston,et al.  Global scale macroecology: Interactions between population size, geographic range size and body size in the Anseriformes , 1996 .

[48]  E. Gudynas,et al.  Reptiles del Centro, Centro-Oeste y Sur de la Argentina. Herpetofauna de Las Zonas Áridas y Semiáridas@@@Reptiles del Centro, Centro-Oeste y Sur de la Argentina. Herpetofauna de Las Zonas Aridas y Semiaridas , 1988 .

[49]  Kevin J. Gaston,et al.  Thermal tolerance, climatic variability and latitude , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[50]  K. Gaston,et al.  Why Rapoport's rule does not generalise , 1999 .

[51]  Timothy A Mousseau ECTOTHERMS FOLLOW THE CONVERSE TO BERGMANN'S RULE , 1997, Evolution; international journal of organic evolution.

[52]  J. Terborgh On the Notion of Favorableness in Plant Ecology , 1973, The American Naturalist.

[53]  K. Gaston,et al.  Pattern and Process in Macroecology , 2000 .

[54]  K. G. Ashton Patterns of within-species body size variation of birds: strong evidence for Bergmann's rule , 2002 .

[55]  K. Abromeit Music Received , 2023, Notes.

[56]  L. Partridge,et al.  BERGMANN'S RULE IN ECTOTHERMS: IS IT ADAPTIVE? , 1997, Evolution; international journal of organic evolution.

[57]  D. Swofford PAUP*: Phylogenetic analysis using parsimony (*and other methods), Version 4.0b10 , 2002 .

[58]  R. E. Espinoza,et al.  Taxonomy of the Liolaeminae (Squamata: Iguania: Tropiduridae) and a Semi-Annotated Bibliograpy [Bibliography] , 2000 .

[59]  Ernst Mayr,et al.  GEOGRAPHICAL CHARACTER GRADIENTS AND CLIMATIC ADAPTATION , 1956 .

[60]  J. Felsenstein Phylogenies and the Comparative Method , 1985, The American Naturalist.

[61]  J. Lawton,et al.  Are there latitudinal and altidudinal Rapoport effects in the geographic ranges of Andean passerine birds , 1998 .

[62]  C. O’Brien,et al.  Fisheries: Climate variability and North Sea cod , 2000, Nature.

[63]  J. Losos,et al.  Tempo and Mode of Evolutionary Radiation in Iguanian Lizards , 2003, Science.

[64]  T. Garland,et al.  Procedures for the Analysis of Comparative Data Using Phylogenetically Independent Contrasts , 1992 .

[65]  Fredrica H. van Berkum,et al.  LATITUDINAL PATTERNS OF THE THERMAL SENSITIVITY OF SPRINT SPEED IN LIZARDS , 1988 .

[66]  G. C. Stevens The Latitudinal Gradient in Geographical Range: How so Many Species Coexist in the Tropics , 1989, The American Naturalist.

[67]  T. Garland,et al.  Sprint performance of phrynosomatid lizards, measured on a high‐speed treadmill, correlates with hindlimb length , 1999 .