The importance of phylogenetic scale in tests of Bergmann's and Rapoport's rules: lessons from a clade of South American lizards
暂无分享,去创建一个
Lee FitzGerald | F. B. Cruz | R. E. Espinoza | J. Schulte | F B Cruz | L A Fitzgerald | R E Espinoza | J A Schulte
[1] K. S. Norris. Color adaptation in desert reptiles and its thermal relationships , 1967 .
[2] K. Gaston,et al. Range size-body size relationships: evidence of scale dependence , 1996 .
[3] J. Macey,et al. Phylogenetic relationships in the iguanid lizard genus Liolaemus: multiple origins of viviparous reproduction and evidence for recurring Andean vicariance and dispersal , 2000 .
[4] E. Abouheif. A method for testing the assumption of phylogenetic independence in comparative data , 1999 .
[5] F. H. Pough,et al. Lizard Energetics and Diet , 1973 .
[6] C M BOGERT,et al. THERMOREGULATION IN REPTILES, A FACTOR IN EVOLUTION , 1949, Evolution; international journal of organic evolution.
[7] Mark S. Boyce,et al. Seasonality, Fasting Endurance, and Body Size in Mammals , 1985, The American Naturalist.
[8] W. Porter,et al. 3. BIOPHYSICAL ANALYSES OF ENERGETICS, TIME-SPACE UTILIZATION, AND DISTRIBUTIONAL LIMITS , 1983 .
[9] W. Rice. ANALYZING TABLES OF STATISTICAL TESTS , 1989, Evolution; international journal of organic evolution.
[10] K. Gaston,et al. On the Heritability of Geographic Range Sizes , 2003, The American Naturalist.
[11] C. Tracy,et al. Recurrent evolution of herbivory in small, cold-climate lizards: breaking the ecophysiological rules of reptilian herbivory. , 2004, Proceedings of the National Academy of Sciences of the United States of America.
[12] C. J. Bell. THE SCALING OF THE THERMAL INERTIA OF LIZARDS , 1980 .
[13] D. Jablonski,et al. Heritability at the Species Level: Analysis of Geographic Ranges of Cretaceous Mollusks , 1987, Science.
[14] I. Spellerberg. Critical Minimum Temperatures of Reptiles , 1973 .
[15] R. B. Cowles,et al. A preliminary study of the thermal requirements of desert reptiles. Bulletin of the AMNH ; v. 83, article 5 , 1944 .
[16] C. Feldman,et al. BERGMANN'S RULE IN NONAVIAN REPTILES: TURTLES FOLLOW IT, LIZARDS AND SNAKES REVERSE IT , 2003, Evolution; international journal of organic evolution.
[17] R. Etheridge,et al. Two New Species of the Lizard Genus Liolaemus (Squamata: Liolaemidae) from Northern Patagonia, with Comments on Liolaemus rothi , 2003 .
[18] D. Schluter,et al. Using Phylogenies to Test Macroevolutionary Hypotheses of Trait Evolution in Cranes (Gruinae) , 1999, The American Naturalist.
[19] K. G. Ashton. Are ecological and evolutionary rules being dismissed prematurely? , 2001 .
[20] Dawn M. Kaufman,et al. THE GEOGRAPHIC RANGE: Size, Shape, Boundaries, and Internal Structure , 1996 .
[21] M. C. Tracy,et al. Is Bergmann’s Rule Valid for Mammals? , 2000, The American Naturalist.
[22] G. C. Stevens. The Elevational Gradient in Altitudinal Range: An Extension of Rapoport's Latitudinal Rule to Altitude , 1992, The American Naturalist.
[23] BODY SIZE VARIATION AMONG MAINLAND POPULATIONS OF THE WESTERN RATTLESNAKE (CROTALUS VIRIDIS) , 2001, Evolution; international journal of organic evolution.
[24] K. Nussear,et al. 05. Misconceptions about colour, infrared radiation, and energy exchange between animals and their environments , 2000 .
[25] A. Helbig,et al. EVOLUTION OF BREEDING DISTRIBUTIONS IN THE OLD WORLD LEAF WARBLERS (GENUS PHYLLOSCOPUS) , 1997, Evolution; international journal of organic evolution.
[26] O. Pearson. The effect of substrate and of skin color on thermoregulation of a lizard , 1977 .
[27] J. Lawton,et al. Latitudinal gradients in butterfly body sizes: is there a general pattern? , 1995, Oecologia.
[28] Kevin J. Gaston,et al. Elevation and climatic tolerance : a test using dung beetles , 1999 .
[29] N. Loder,et al. Geographic gradients in body size: a clarification of Bergmann's rule , 1999 .
[30] G. Burghardt,et al. To Bury in Sand: Phylogenetic Relationships among Lizard Species of the Boulengeri Group, Liolaemus (Reptilia: Squamata: Tropiduridae), Based on Behavioral Characters , 1998 .
[31] F. C. James. Geographic Size Variation in Birds and Its Relationship to Climate , 1970 .
[32] J. H. Carothers,et al. Thermal characteristics of ten Andean lizards of the genus Liolaemus in central Chile , 1997 .
[33] H. Pörtner,et al. Climate change and temperature-dependent biogeography: oxygen limitation of thermal tolerance in animals , 2001, Naturwissenschaften.
[34] I. Spellerberg. Temperature tolerances of Southeast Australian reptiles examined in relation to reptile thermoregulatory behaviour and distribution , 1972, Oecologia.
[35] P. Stephens,et al. Explaining Species Richness from Continents to Communities: The Time‐for‐Speciation Effect in Emydid Turtles , 2002, The American Naturalist.
[36] K. G. Ashton. Do amphibians follow Bergmann's rule? , 2002 .
[37] J. Losos,et al. The relationship between morphology, escape behaviour and microhabitat occupation in the lizard clade Liolaemus (Iguanidae: Tropidurinae * : Liolaemini) , 2004, Journal of evolutionary biology.
[38] R. Reed. Interspecific patterns of species richness, geographic range size, and body size among New World venomous snakes , 2003 .
[39] T. Blackburn,et al. Rapoport's rule: time for an epitaph? , 1998, Trends in ecology & evolution.
[40] T. Blackburn,et al. Latitude, elevation and body mass variation in Andean passerine birds , 2001 .
[41] T. Best. Relationships between abiotic variables and geographic variation in skulls of pumas (Puma concolor: Mammalia, Felidae) in North and South America , 1996 .
[42] R. Etheridge. Redescription of Ctenoblepharys adspersa Tschudi, 1845, and the taxonomy of Liolaeminae (Reptilia, Squamata, Tropiduridae). American Museum novitates ; no. 3142 , 1995 .
[43] R. Etheridge. A REVIEW OF LIZARDS OF THE LIOLAEMUS WIEGMANNII GROUP (SQUAMATA, IGUANIA, TROPIDURIDAE), AND A HISTORY OF MORPHOLOGICAL CHANGE IN THE SAND-DWELLING SPECIES , 2000 .
[44] J. M. Cei. Reptiles del noroeste, nordeste y este de la Argentina : herpetofauna de las selvas subtropicales, Puna y Pampas , 1993 .
[45] David Posada,et al. MODELTEST: testing the model of DNA substitution , 1998, Bioinform..
[46] V. H. Hutchison,et al. The critical thermal maximum: history and critique , 1997 .
[47] K. Gaston,et al. Global scale macroecology: Interactions between population size, geographic range size and body size in the Anseriformes , 1996 .
[48] E. Gudynas,et al. Reptiles del Centro, Centro-Oeste y Sur de la Argentina. Herpetofauna de Las Zonas Áridas y Semiáridas@@@Reptiles del Centro, Centro-Oeste y Sur de la Argentina. Herpetofauna de Las Zonas Aridas y Semiaridas , 1988 .
[49] Kevin J. Gaston,et al. Thermal tolerance, climatic variability and latitude , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.
[50] K. Gaston,et al. Why Rapoport's rule does not generalise , 1999 .
[51] Timothy A Mousseau. ECTOTHERMS FOLLOW THE CONVERSE TO BERGMANN'S RULE , 1997, Evolution; international journal of organic evolution.
[52] J. Terborgh. On the Notion of Favorableness in Plant Ecology , 1973, The American Naturalist.
[53] K. Gaston,et al. Pattern and Process in Macroecology , 2000 .
[54] K. G. Ashton. Patterns of within-species body size variation of birds: strong evidence for Bergmann's rule , 2002 .
[55] K. Abromeit. Music Received , 2023, Notes.
[56] L. Partridge,et al. BERGMANN'S RULE IN ECTOTHERMS: IS IT ADAPTIVE? , 1997, Evolution; international journal of organic evolution.
[57] D. Swofford. PAUP*: Phylogenetic analysis using parsimony (*and other methods), Version 4.0b10 , 2002 .
[58] R. E. Espinoza,et al. Taxonomy of the Liolaeminae (Squamata: Iguania: Tropiduridae) and a Semi-Annotated Bibliograpy [Bibliography] , 2000 .
[59] Ernst Mayr,et al. GEOGRAPHICAL CHARACTER GRADIENTS AND CLIMATIC ADAPTATION , 1956 .
[60] J. Felsenstein. Phylogenies and the Comparative Method , 1985, The American Naturalist.
[61] J. Lawton,et al. Are there latitudinal and altidudinal Rapoport effects in the geographic ranges of Andean passerine birds , 1998 .
[62] C. O’Brien,et al. Fisheries: Climate variability and North Sea cod , 2000, Nature.
[63] J. Losos,et al. Tempo and Mode of Evolutionary Radiation in Iguanian Lizards , 2003, Science.
[64] T. Garland,et al. Procedures for the Analysis of Comparative Data Using Phylogenetically Independent Contrasts , 1992 .
[65] Fredrica H. van Berkum,et al. LATITUDINAL PATTERNS OF THE THERMAL SENSITIVITY OF SPRINT SPEED IN LIZARDS , 1988 .
[66] G. C. Stevens. The Latitudinal Gradient in Geographical Range: How so Many Species Coexist in the Tropics , 1989, The American Naturalist.
[67] T. Garland,et al. Sprint performance of phrynosomatid lizards, measured on a high‐speed treadmill, correlates with hindlimb length , 1999 .