Recycling Potentials of Critical Metals-Analyzing Secondary Flows from Selected Applications

Metal mobilization in general, as well as the number of metals used in products to increase performance and provide sometimes unique functionalities, has increased steadily in the past decades. Materials, such as indium, gallium, platinum group metals (PGM), and rare earths (RE), are used ever more frequently in high-tech applications and their criticality as a function of economic importance and supply risks has been highlighted in various studies. Nevertheless, recycling rates are often below one percent. Against this background, secondary flows of critical metals from three different end-of-life products up to 2020 are modeled and losses along the products’ end-of-life (EOL) chain are identified. Two established applications of PGM and RE–industrial catalysts and thermal barrier coatings–and CIGS photovoltaic cells as a relatively new product have been analyzed. In addition to a quantification of future EOL flows, the analysis showed that a relatively well working recycling system exists for PGM-bearing catalysts, while a complete loss of critical metals occurs for the other applications. The reasons include a lack of economic incentives, technologically caused material dissipation and other technological challenges.

[1]  J. Allwood,et al.  What Do We Know About Metal Recycling Rates? , 2011 .

[2]  Kari Heiskanen,et al.  Metal recycling: opportunities, limits, infrastructure , 2012 .

[3]  Robert U. Ayres,et al.  Sustainable metals management : securing our future - steps towards a closed loop economy , 2006 .

[4]  Brian Azzopardi,et al.  Life cycle analysis for future photovoltaic systems using hybrid solar cells , 2010 .

[5]  Vasilis Fthenakis,et al.  Sustainability of photovoltaics: The case for thin-film solar cells , 2009 .

[6]  Eugene H. Lehman,et al.  Shapes, Moments and Estimators of the Weibull Distribution , 1963 .

[7]  E. A. Alsema,et al.  A novel approach for the recycling of thin film photovoltaic modules , 2010 .

[8]  Matthias Oechsner,et al.  Thermal-barrier coatings for more efficient gas-turbine engines , 2012 .

[9]  R. Martínez-Béjar,et al.  Life cycle assessment study of a 4.2 kWp stand-alone photovoltaic system , 2009 .

[10]  M. Vuorinen,et al.  Chapter 14 - Special Functions in Geometric Function Theory , 2005 .

[11]  T. Tasaki,et al.  Lifespan of Commodities, Part I , 2010 .

[12]  Peter Ryan,et al.  Materials flow of platinum group metals in Germany , 2009 .

[13]  Perrine Chancerel,et al.  Substance flow analysis of the recycling of small waste electrical and electronic equipment , 2010 .

[14]  Thomas E. Strangman,et al.  Thermal barrier coatings for turbine airfoils , 1985 .

[15]  R. Herzog,et al.  Damage mechanisms and lifetime behavior of plasma-sprayed thermal barrier coating systems for gas turbines — Part II: Modeling , 2008 .

[16]  T. Zimmermann,et al.  HISTORIC AND FUTURE FLOWS OF CRITICAL MATERIALS RESULTING FROM DEPLOYMENT OF PHOTOVOLTAICS , 2013 .

[17]  T. Zimmermann Dynamic material flow analysis of critical metals embodied in thin-film photovoltaic cells , 2013 .

[18]  E. Jordan,et al.  Thermal Barrier Coatings for Gas-Turbine Engine Applications , 2002, Science.

[19]  Varun,et al.  Life cycle assessment of solar PV based electricity generation systems: A review , 2010 .

[20]  A. Reller,et al.  Future recycling flows of tellurium from cadmium telluride photovoltaic waste , 2012 .

[21]  Robert Ilg,et al.  Update of environmental indicators and energy payback time of CdTe PV systems in Europe , 2011 .

[22]  Till Zimmermann,et al.  Critical materials and dissipative losses: a screening study. , 2013, The Science of the total environment.

[23]  L. Singheiser,et al.  Einfluss der Bondcoatzusammensetzung und Herstellungsparameter auf die Lebensdauer von Wärmedämmschichten bei zyklischer Temperaturbelastung , 2008 .

[24]  Till Zimmermann,et al.  Material Flows Resulting from Large Scale Deployment of Wind Energy in Germany , 2013 .

[25]  Anna Stoppato,et al.  Life cycle assessment of photovoltaic electricity generation , 2008 .

[26]  Simon Warren,et al.  Methodology of metal criticality determination. , 2012, Environmental science & technology.

[27]  K. Shadan,et al.  Available online: , 2012 .

[28]  J.-F. Ménard,et al.  End-of-Life CdTe PV Recycling with Semiconductor Refining , 2012 .

[29]  Tzimas Evangelos,et al.  Critical Metals in Strategic Energy Technologies - Assessing Rare Metals as Supply-Chain Bottlenecks in Low-Carbon Energy Technologies , 2011 .

[30]  Rustum Roy,et al.  Materials Research Society , 1984 .

[31]  V. Fthenakis,et al.  Cadmium flows and emissions from CdTe PV: future expectations , 2010 .

[32]  D. Bleiwas Byproduct mineral commodities used for the production of photovoltaic cells , 2010 .

[33]  N. J. Mohr,et al.  Life cycle assessment of thin‐film GaAs and GaInP/GaAs solar modules , 2007 .

[34]  Amany von Oehsen,et al.  Langfristszenarien und Strategien für den Ausbau der erneuerbaren Energien in Deutschland bei Berücksichtigung der Entwicklung in Europa und global , 2012 .

[35]  D. Stöver,et al.  Overview on advanced thermal barrier coatings , 2010 .

[36]  Shigemi Kagawa,et al.  The environmental and economic consequences of product lifetime extension: Empirical analysis for automobile use , 2006 .

[37]  H. Rechberger,et al.  Considerations of resource availability in technology development strategies: The case study of photovoltaics , 2011 .

[38]  T. Graedel,et al.  Criticality of non-fuel minerals: a review of major approaches and analyses. , 2011, Environmental science & technology.

[39]  Seiji Hashimoto,et al.  Lifespan of Commodities, Part II , 2010 .

[40]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[41]  Cynthia K. Dohner U.S. DEPARTMENT OF THE INTERIOR , 1998 .

[42]  Sven Teske,et al.  Solar photovoltaic electricity empowering the world , 2011 .

[43]  Arnim von Gleich,et al.  Outlines of a Sustainable Metals Industry , 2006 .

[44]  Tomohiro Tasaki,et al.  Substance flow analysis of brominated flame retardants and related compounds in waste TV sets in Japan. , 2004, Waste management.

[45]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[46]  W. Shotyk,et al.  Contamination of bottled waters with antimony leaching from polyethylene terephthalate (PET) increases upon storage. , 2007, Environmental science & technology.

[47]  Claudia Landman,et al.  Kernkraftwerke in Deutschland , 2012 .

[48]  Björn A. Andersson Materials availability for large-scale thin-film photovoltaics , 2000 .

[49]  Masahiro Oguchi,et al.  Product flow analysis of various consumer durables in Japan , 2008 .

[50]  T. Beck,et al.  Optimierung von APS-ZrO 2-Wärmedämmschichten durch Variation der Kriechfestigkeit und der Grenzflächenrauhigkeit , 2011 .

[51]  V. S. Rotter,et al.  Assessment of Precious Metal Flows During Preprocessing of Waste Electrical and Electronic Equipment , 2009 .

[52]  D. Nissley Thermal barrier coating life modeling in aircraft gas turbine engines , 1997 .

[53]  R. Mévrel,et al.  10 Years-Activities at ONERA on Advanced Thermal Barrier Coatings , 2011 .

[54]  Koji Nomura Duration of Assets: Examination of Directly Observed Discard Data in Japan , 2005 .

[55]  Bijan Sarkar,et al.  Design For Reliability With Weibull Analysis For Photovoltaic Modules , 2013 .

[56]  Wen-ching Yang Handbook of Fluidization and Fluid-Particle Systems , 2003 .

[57]  Christina Meskers,et al.  Technology challenges to recover precious and special metals from complex products , 2009 .

[58]  L. Chaar,et al.  Review of photovoltaic technologies , 2011 .

[59]  Robert Michael Orenstein,et al.  TBC experience in land- based gas turbines , 1997 .

[60]  S. Brereton Life , 1876, The Indian medical gazette.

[61]  H. Christopher Frey,et al.  Probabilistic Techniques in Exposure Assessment: A Handbook for Dealing with Variability and Uncertainty in Models and Inputs , 1999 .