On error exponents of nested lattice codes for the AWGN channel
暂无分享,去创建一个
Pierre Moulin | Tie Liu | Ralf Koetter | R. Koetter | P. Moulin | Tie Liu
[1] R. Gallager. Information Theory and Reliable Communication , 1968 .
[2] Max H. M. Costa,et al. Writing on dirty paper , 1983, IEEE Trans. Inf. Theory.
[3] Brian L. Hughes,et al. Exponential error bounds for random codes on Gaussian arbitrarily varying channels , 1991, IEEE Trans. Inf. Theory.
[4] Gregory Poltyrev,et al. On coding without restrictions for the AWGN channel , 1993, IEEE Trans. Inf. Theory.
[5] Meir Feder,et al. On lattice quantization noise , 1996, IEEE Trans. Inf. Theory.
[6] Hans-Andrea Loeliger,et al. Averaging bounds for lattices and linear codes , 1997, IEEE Trans. Inf. Theory.
[7] R. Zamir,et al. Lattice decoding can achieve 1/2 log(1+SNR) on the AWGN channel using nested codes , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).
[8] Shlomo Shamai,et al. Nested linear/Lattice codes for structured multiterminal binning , 2002, IEEE Trans. Inf. Theory.
[9] R. Zamir,et al. Lattice decoded nested codes achieve the Poltyrev exponent , 2002, Proceedings IEEE International Symposium on Information Theory,.
[10] G. David Forney,et al. On the role of MMSE estimation in approaching the information-theoretic limits of linear Gaussian channels: Shannon meets Wiener , 2004, ArXiv.
[11] Uri Erez,et al. Achieving 1/2 log (1+SNR) on the AWGN channel with lattice encoding and decoding , 2004, IEEE Transactions on Information Theory.