Analytical pricing of vulnerable options under a generalized jump–diffusion model

In this paper we propose a model to price European vulnerable options. We formulate their credit risk in a reduced form model and the dynamics of the spot price in a completely random generalized jump–diffusion model, which nests a number of important models in finance. We obtain a closed-form price for the vulnerable option by (1) determining an equivalent martingale measure, using the Esscher transform and (2) manipulating the pay-off structure of the option four further times, by using the Esscher–Girsanov transform.

[1]  Lancelot F. James,et al.  Poisson Process Partition Calculus with Applications to Exchangeable Models and Bayesian Nonparametrics , 2002 .

[2]  Lancelot F. James Bayesian Poisson process partition calculus with an application to Bayesian Lévy moving averages , 2005, math/0508283.

[3]  O. Barndorff-Nielsen,et al.  Probability measures, Lévy measures and analyticity in time , 2006, 0811.0678.

[4]  D. Duffie,et al.  Modeling term structures of defaultable bonds , 1999 .

[5]  M. Frittelli The Minimal Entropy Martingale Measure and the Valuation Problem in Incomplete Markets , 2000 .

[6]  R. C. Merton,et al.  On the Pricing of Corporate Debt: The Risk Structure of Interest Rates , 1974, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.

[7]  R. Jarrow,et al.  Pricing Derivatives on Financial Securities Subject to Credit Risk , 1995 .

[8]  R. C. Merton,et al.  Theory of Rational Option Pricing , 2015, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.

[9]  M. Yor,et al.  The Fine Structure of Asset Retums : An Empirical Investigation ' , 2006 .

[10]  M. Goovaerts,et al.  Actuarial Risk Measures for Financial Derivative Pricing , 2006 .

[11]  Qiang Zhang,et al.  Option pricing in incomplete markets , 2013, Appl. Math. Lett..

[12]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[13]  C. Lo,et al.  Pricing Vulnerable Black-Scholes Options with Dynamic Default Barriers , 2003 .

[14]  F. Black,et al.  VALUING CORPORATE SECURITIES: SOME EFFECTS OF BOND INDENTURE PROVISIONS , 1976 .

[15]  M. Schweizer On the Minimal Martingale Measure and the Foellmer- Schweizer Decomposition , 1995 .

[16]  Albert Y. Lo,et al.  On a class of Bayesian nonparametric estimates: II. Hazard rate estimates , 1989 .

[17]  Peter G. Klein,et al.  Pricing Black-Scholes options with correlated credit risk , 1996 .

[18]  Valuation of European Options Subject to Financial Distress and Interest Rate risk , 1999 .

[19]  Robert J. Elliott,et al.  Option pricing and Esscher transform under regime switching , 2005 .

[20]  David Lando,et al.  On cox processes and credit risky securities , 1998 .

[21]  Herb Johnson,et al.  The Pricing of Options with Default Risk , 1987 .

[22]  Yongjin Wang,et al.  Pricing Vulnerable Options with Correlated Credit Risk Under Jump‐Diffusion Processes , 2014 .

[23]  P. Carr,et al.  The Variance Gamma Process and Option Pricing , 1998 .

[24]  Eduardo S. Schwartz,et al.  A Simple Approach to Valuing Risky Fixed and Floating Rate Debt , 1995 .

[25]  R. Elliott,et al.  Esscher transforms and consumption-based models , 2009 .

[26]  John C. Hull,et al.  Valuing Credit Default Swaps I , 2000 .

[27]  Peter G. Klein,et al.  Pricing vulnerable European options when the option's payoff can increase the risk of financial distress , 2001 .

[28]  F Escher,et al.  On the probability function in the collective theory of risk , 1932 .