SGR 0418+5729, Swift J1822.3-1606, and 1E 2259+586 as massive, fast-rotating, highly magnetized white dwarfs

Following Malheiro et al. (2012) we describe the so-called low magnetic field magnetars, SGR 0418+5729, Swift J1822.3‐1606, as well as the AXP prototype 1E 2259+586 as massive fast rotating highly magnetized white dwarfs. We give bounds for the mass, radius, moment of inertia, and magnetic field for these sourc es by requesting the stability of realistic general relativ istic uniformly rotating configurations. Based on these parameters, we impr ove the theoretical prediction of the lower limit of the spin down rate of SGR 0418+5729; for a white dwarf close to its maximum stable we obtain the very stringent interval for the spindown rate of 4.1× 10 −16 < ˙ P < 6× 10 −15 , where the upper value is the known observational limit. A lower limit has been also set for Swift J1822.3-1606 for which a fully observationally accepted spin-down rate is still lacking. The white dwarf model provides for this source ˙ P≥ 2.13× 10 −15 , if the star is close to its maximum stable mass. We also present the theoretical expectation of the infrared, optical and ultraviolet emission of these objects and show their consistency with the current available observational data. We give in addition the frequencies at which absorption features could be present in the spectrum of these sources as the result of t he scattering of photons with the quantized electrons by the surface magnetic field.

[1]  C. Kouveliotou,et al.  THE OUTBURST DECAY OF THE LOW MAGNETIC FIELD MAGNETAR SGR 0418+5729 , 2013, 1303.5579.

[2]  A. Zezas,et al.  AN ACCRETION MODEL FOR THE ANOMALOUS X-RAY PULSAR 4U 0142+61 , 2012, 1212.5373.

[3]  R. Xu,et al.  The timing behavior of magnetar Swift J1822.3–1606: timing noise or a decreasing period derivative? , 2012, 1212.4314.

[4]  S. O. Kepler,et al.  Magnetic white dwarf stars in the Sloan Digital Sky Survey , 2012, 1211.5709.

[5]  R. Ruffini,et al.  ON GENERAL RELATIVISTIC UNIFORMLY ROTATING WHITE DWARFS , 2012, 1204.2070.

[6]  N. Gehrels,et al.  A NEW LOW MAGNETIC FIELD MAGNETAR: THE 2011 OUTBURST OF SWIFT J1822.3−1606 , 2012, 1203.6449.

[7]  R. Kothes,et al.  A THOROUGH INVESTIGATION OF THE DISTANCE TO THE SUPERNOVA REMNANT CTB109 AND ITS PULSAR AXP J2301+5852 , 2012 .

[8]  M. Durant,et al.  SEARCH FOR THE OPTICAL COUNTERPART TO SGR 0418+5729 , 2011, 1108.3340.

[9]  J. Kennea,et al.  Swift J1822.3-1606: Enhanced Swift-XRT position , 2011 .

[10]  M. Malheiro,et al.  SGRs and AXPs as Rotation-Powered Massive White Dwarfs , 2011, 1102.0653.

[11]  C. Kouveliotou,et al.  A Low-Magnetic-Field Soft Gamma Repeater , 2010, Science.

[12]  I. Malov The drift model for AXPs and SGRs in the light of new observtional data , 2010 .

[13]  U. Bastian,et al.  Constraints on the origin of the massive, hot, and rapidly rotating magnetic white dwarf RE J 0317-853 from an HST parallax measurement , 2010, 1007.4978.

[14]  S. Xue,et al.  On the relativistic Thomas-Fermi treatment of compressed atoms and compressed nuclear matter cores of stellar dimensions , 2009, 0911.4622.

[15]  W. Hillebrandt,et al.  Sub-luminous type Ia supernovae from the mergers of equal-mass white dwarfs with mass ∼0.9M⊙ , 2009, Nature.

[16]  B. Gaensicke,et al.  Analysis of hydrogen-rich magnetic white dwarfs detected in the Sloan Digital Sky Survey , 2009, 0907.2372.

[17]  J. Isern,et al.  High-resolution smoothed particle hydrodynamics simulations of the merger of binary white dwarfs , 2009, 0903.4599.

[18]  S. Mereghetti The strongest cosmic magnets: soft gamma-ray repeaters and anomalous X-ray pulsars , 2008, 0804.0250.

[19]  J. Liebert,et al.  The open cluster initial-final mass relationship and the high-mass tail of the white dwarf distribution , 2005, astro-ph/0506317.

[20]  J. Wilms,et al.  XMM-Newton observation of the anomalous X-ray pulsar 4U 0142+61 , 2004, astro-ph/0409764.

[21]  Randall K. Smith,et al.  XMM-Newton Observations of the Galactic Supernova Remnant CTB 109 (G109.1–1.0) , 2004, astro-ph/0408290.

[22]  J. Heyl,et al.  Changes in the X-Ray Emission from the Magnetar Candidate 1E 2259+586 during Its 2002 Outburst , 2003, astro-ph/0310575.

[23]  M. Jura A Tidally Disrupted Asteroid around the White Dwarf G29-38 , 2003, astro-ph/0301411.

[24]  M. Kerkwijk,et al.  An optical counterpart to the anomalous X-ray pulsar 4U0142+61 , 2000, Nature.

[25]  M. Burleigh,et al.  RE J0317 – 853: the hottest known highly magnetic DA white dwarf , 1995 .

[26]  C. Thompson,et al.  The soft gamma repeaters as very strongly magnetized neutron stars - I. Radiative mechanism for outbursts , 1995 .

[27]  V. Usov GLITCHES IN THE X-RAY PULSAR IZE 2259 + 586 , 1993, astro-ph/9312061.

[28]  V. Usov High-Frequency Emission of X-Ray Pulsar 1E 2259+586 , 1993 .

[29]  J. Liebert,et al.  Two ultramassive white dwarfs found among candidates for magnetic fields , 1992 .

[30]  Christopher Thompson,et al.  Formation of very strongly magnetized neutron stars - Implications for gamma-ray bursts , 1992 .

[31]  B. Paczyński X-ray pulsar 1E 2259 + 586 - A merged white dwarf with a 7 second rotation period , 1990 .

[32]  K. Wood,et al.  HEAO-1 observations of the X-ray pulsar 1E2259 + 586 , 1990, Monthly Notices of the Royal Astronomical Society.

[33]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[34]  M. Klis,et al.  EXOSAT observations of the supernova remnant G109.1−1.0 and the X-ray pulsar 1E 2259+586 , 1988 .

[35]  R. Sorkin,et al.  Turning-point method for axisymmetric stability of rotating relativistic stars , 1988 .

[36]  J. Liebert,et al.  The new magnetic white dwarf PG 1031 + 234 - Polarization and field structure at more than 500 milion Gauss , 1986 .

[37]  P. Seymour Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects , 1984 .

[38]  Saul A. Teukolsky,et al.  Black Holes, White Dwarfs, and Neutron Stars , 1983 .

[39]  P. Gregory,et al.  An X-ray pulsar in SNR G109.1–1.0 , 1981, Nature.

[40]  S. Bergh,et al.  A new supernova remnant G 109.2-1.0. , 1981 .

[41]  P. Gregory,et al.  An extraordinary new celestial X-ray source , 1980, Nature.

[42]  A. Quadir,et al.  On the rotational energy loss of pulsars , 1980 .

[43]  D. Pines,et al.  Neutron starquakes and pulsar speedup , 1971 .

[44]  J. Hartle Slowly Rotating Relativistic Stars. I. Equations of Structure , 1967 .

[45]  E. Salpeter Energy and Pressure of a Zero-Temperature Plasma , 1961 .

[46]  J. Liebert,et al.  Two hot, low-field magnetic DA white dwarfs , 1983 .

[47]  A. Ferrari,et al.  THEORETICAL IMPLICATIONS OF THE SECOND TIME DERIVATIVE OF THE PERIOD OF THE PULSAR NP 0532. , 1969 .

[48]  J. Hartle,et al.  Slowly Rotating Relativistic Stars. II. Models for Neutron Stars and Supermassive Stars , 1968 .