Convergence rate of McCormick relaxations
暂无分享,去创建一个
[1] Christodoulos A. Floudas,et al. Finding all solutions of nonlinearly constrained systems of equations , 1995, J. Glob. Optim..
[2] Nikolaos V. Sahinidis,et al. A polyhedral branch-and-cut approach to global optimization , 2005, Math. Program..
[3] C. Floudas,et al. A global optimization approach for Lennard‐Jones microclusters , 1992 .
[4] Daniel Scholz,et al. The theoretical and empirical rate of convergence for geometric branch-and-bound methods , 2010, J. Glob. Optim..
[5] Paul I. Barton,et al. The cluster problem revisited , 2013, Journal of Global Optimization.
[6] Christodoulos A. Floudas,et al. αBB: A global optimization method for general constrained nonconvex problems , 1995, J. Glob. Optim..
[7] Nils Tönshoff,et al. Implementation and Computational Results , 1997 .
[8] Christodoulos A. Floudas,et al. A New Class of Improved Convex Underestimators for Twice Continuously Differentiable Constrained NLPs , 2004, J. Glob. Optim..
[9] Paul I. Barton,et al. Global solution of semi-infinite programs , 2004 .
[10] Chrysanthos E. Gounaris,et al. Tight convex underestimators for C 2 -continuous problems: II. multivariate functions. , 2008 .
[11] G. McCormick. Nonlinear Programming: Theory, Algorithms and Applications , 1983 .
[12] N. Sahinidis,et al. Convexification and Global Optimization in Continuous And , 2002 .
[13] S. K. Mishra,et al. Nonconvex Optimization and Its Applications , 2008 .
[14] Christodoulos A. Floudas,et al. Global optimization for molecular conformation problems , 1993, Ann. Oper. Res..
[15] Paul I. Barton,et al. McCormick-Based Relaxations of Algorithms , 2009, SIAM J. Optim..
[16] Paul I. Barton,et al. Relaxation-Based Bounds for Semi-Infinite Programs , 2008, SIAM J. Optim..
[17] Christodoulos A. Floudas,et al. Rigorous convex underestimators for general twice-differentiable problems , 1996, J. Glob. Optim..
[18] James E. Falk,et al. Jointly Constrained Biconvex Programming , 1983, Math. Oper. Res..
[19] C. Adjiman,et al. A global optimization method, αBB, for general twice-differentiable constrained NLPs—II. Implementation and computational results , 1998 .
[20] Paul I. Barton,et al. Interval Methods for Semi-Infinite Programs , 2005, Comput. Optim. Appl..
[21] Ramon E. Moore. Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.
[22] J. F. Price,et al. On descent from local minima , 1971 .
[23] P. I. Barton,et al. Construction of Convex Relaxations Using Automated Code Generation Techniques , 2002 .
[24] Garth P. McCormick,et al. Computability of global solutions to factorable nonconvex programs: Part I — Convex underestimating problems , 1976, Math. Program..
[25] Nikolaos V. Sahinidis,et al. Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming , 2002 .
[26] A. Neumaier,et al. A global optimization method, αBB, for general twice-differentiable constrained NLPs — I. Theoretical advances , 1998 .
[27] Sanjo Zlobec,et al. On the Liu–Floudas Convexification of Smooth Programs , 2005, J. Glob. Optim..
[28] Leo Liberti,et al. Branching and bounds tighteningtechniques for non-convex MINLP , 2009, Optim. Methods Softw..
[29] Christodoulos A. Floudas,et al. Tight convex underestimators for $${\mathcal{C}^2}$$ -continuous problems: II. multivariate functions , 2008, J. Glob. Optim..
[30] A. Neumaier. Complete search in continuous global optimization and constraint satisfaction , 2004, Acta Numerica.
[31] R. Baker Kearfott,et al. The cluster problem in multivariate global optimization , 1994, J. Glob. Optim..
[32] Christodoulos A. Floudas,et al. A global optimization method, αBB, for process design , 1996 .
[33] G. Alefeld,et al. Interval analysis: theory and applications , 2000 .
[34] Jon G. Rokne,et al. Computer Methods for the Range of Functions , 1984 .
[35] Christodoulos A. Floudas,et al. Computational Experience with a New Class of Convex Underestimators: Box-constrained NLP Problems , 2004, J. Glob. Optim..
[36] Edward M. B. Smith,et al. A symbolic reformulation/spatial branch-and-bound algorithm for the global optimisation of nonconvex MINLPs , 1999 .
[37] Nikolaos V. Sahinidis,et al. Global optimization of mixed-integer nonlinear programs: A theoretical and computational study , 2004, Math. Program..
[38] Christodoulos A Floudas,et al. Global minimum potential energy conformations of small molecules , 1994, J. Glob. Optim..
[39] A. Neumaier. Acta Numerica 2004: Complete search in continuous global optimization and constraint satisfaction , 2004 .
[40] Nikolaos V. Sahinidis,et al. Analysis of Bounds for Multilinear Functions , 2001, J. Glob. Optim..