Structure of the homodimeric androgen receptor ligand-binding domain

[1]  T. Guthrie,et al.  Prostate cancer. , 2020, American family physician.

[2]  J. Changeux,et al.  Allosteric modulation as a unifying mechanism for receptor function and regulation , 2017, Diabetes, obesity & metabolism.

[3]  D. Svergun,et al.  Solution Behavior of the Intrinsically Disordered N-Terminal Domain of Retinoid X Receptor α in the Context of the Full-Length Protein. , 2016, Biochemistry.

[4]  D. F. Skafar,et al.  Modulation of nuclear receptor activity by the F domain , 2015, Molecular and Cellular Endocrinology.

[5]  N. Mongan,et al.  Androgen insensitivity syndrome. , 2015, Best practice & research. Clinical endocrinology & metabolism.

[6]  M. Michael Gromiha,et al.  Folding RaCe: a robust method for predicting changes in protein folding rates upon point mutations , 2015, Bioinform..

[7]  D. Moras,et al.  Structure-function relationships in nuclear receptors: the facts. , 2015, Trends in biochemical sciences.

[8]  Wah Chiu,et al.  Structure of a biologically active estrogen receptor-coactivator complex on DNA. , 2015, Molecular cell.

[9]  M. Lagerquist,et al.  Sex steroid actions in male bone. , 2014, Endocrine reviews.

[10]  Arnold T. Hagler,et al.  Allosteric mechanisms of nuclear receptors: insights from computational simulations , 2014, Molecular and Cellular Endocrinology.

[11]  R. Evans,et al.  Nuclear Receptors, RXR, and the Big Bang , 2014, Cell.

[12]  K. Knudsen,et al.  AR function in promoting metastatic prostate cancer , 2014, Cancer and Metastasis Reviews.

[13]  S. Khorasanizadeh,et al.  Understanding nuclear receptor form and function using structural biology. , 2013, Journal of molecular endocrinology.

[14]  K. Yamamoto,et al.  The glucocorticoid receptor dimer interface allosterically transmits sequence-specific DNA signals , 2013, Nature Structural &Molecular Biology.

[15]  R. Nussinov,et al.  Allostery in Disease and in Drug Discovery , 2013, Cell.

[16]  Abhijit Karnik,et al.  SDM-Assist software to design site-directed mutagenesis primers introducing “silent” restriction sites , 2013, BMC Bioinformatics.

[17]  Di Wu,et al.  Bioinformatics analysis of the epitope regions for norovirus capsid protein , 2013, BMC Bioinformatics.

[18]  Chi-Wei Chen,et al.  iStable: off-the-shelf predictor integration for predicting protein stability changes , 2013, BMC Bioinformatics.

[19]  Solène Grosdidier,et al.  Allosteric conversation in the androgen receptor ligand-binding domain surfaces. , 2012, Molecular endocrinology.

[20]  F. Claessens,et al.  Evidence for DNA-Binding Domain–Ligand-Binding Domain Communications in the Androgen Receptor , 2012, Molecular and Cellular Biology.

[21]  Mark Trifiro,et al.  The androgen receptor gene mutations database: 2012 update , 2012, Human mutation.

[22]  W. V. van Cappellen,et al.  Stepwise androgen receptor dimerization , 2012, Journal of Cell Science.

[23]  I. McEwan,et al.  The Impact of Point Mutations in the Human Androgen Receptor: Classification of Mutations on the Basis of Transcriptional Activity , 2012, PloS one.

[24]  P. Webb,et al.  Low-Resolution Molecular Models Reveal the Oligomeric State of the PPAR and the Conformational Organization of Its Domains in Solution , 2012, PloS one.

[25]  D. Moras,et al.  Structure of the full human RXR/VDR nuclear receptor heterodimer complex with its DR3 target DNA , 2012, The EMBO journal.

[26]  Dmitri I Svergun,et al.  Common architecture of nuclear receptor heterodimers on DNA direct repeat elements with different spacings , 2011, Nature Structural &Molecular Biology.

[27]  F. Claessens,et al.  The rules of DNA recognition by the androgen receptor. , 2010, Molecular endocrinology.

[28]  P. Bork,et al.  A method and server for predicting damaging missense mutations , 2010, Nature Methods.

[29]  Vikas Chandra,et al.  Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics. , 2010, Annual review of physiology.

[30]  R. Fletterick,et al.  Molecular basis for dimer formation of TRβ variant D355R , 2009, Proteins.

[31]  R. Fletterick,et al.  Structural insight into the mode of action of a direct inhibitor of coregulator binding to the thyroid hormone receptor. , 2007, Molecular endocrinology.

[32]  M. Gromiha,et al.  Prediction of protein stability upon point mutations. , 2007, Biochemical Society transactions.

[33]  Phuong Nguyen,et al.  A surface on the androgen receptor that allosterically regulates coactivator binding , 2007, Proceedings of the National Academy of Sciences.

[34]  Frank Claessens,et al.  The hinge region regulates DNA binding, nuclear translocation, and transactivation of the androgen receptor. , 2007, Cancer research.

[35]  Adriaan B. Houtsmuller,et al.  Compartmentalization of androgen receptor protein–protein interactions in living cells , 2007, The Journal of cell biology.

[36]  G. Jenster,et al.  Novel FXXFF and FXXMF Motifs in Androgen Receptor Cofactors Mediate High Affinity and Specific Interactions with the Ligand-binding Domain* , 2006, Journal of Biological Chemistry.

[37]  M. Michael Gromiha,et al.  CUPSAT: prediction of protein stability upon point mutations , 2006, Nucleic Acids Res..

[38]  Duane D. Miller,et al.  Structural basis for antagonism and resistance of bicalutamide in prostate cancer , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[39]  R. Fletterick,et al.  The Molecular Mechanisms of Coactivator Utilization in Ligand-dependent Transactivation by the Androgen Receptor* , 2005, Journal of Biological Chemistry.

[40]  Kaixian Chen,et al.  Ligand‐binding regulation of LXR/RXR and LXR/PPAR heterodimerizations: SPR technology‐based kinetic analysis correlated with molecular dynamics simulation , 2005, Protein science : a publication of the Protein Society.

[41]  G. Batist,et al.  An examination of how different mutations at arginine 855 of the androgen receptor result in different androgen insensitivity phenotypes. , 2004, Molecular endocrinology.

[42]  F. Claessens,et al.  Structural basis of androgen receptor binding to selective androgen response elements. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Rama Ranganathan,et al.  Structural Determinants of Allosteric Ligand Activation in RXR Heterodimers , 2004, Cell.

[44]  C. Geserick,et al.  Differential modulation of androgen receptor action by deoxyribonucleic acid response elements. , 2003, Molecular endocrinology.

[45]  Alois Jungbauer,et al.  Kinetic analysis of estrogen receptor homo- and heterodimerization in vitro , 2003, The Journal of Steroid Biochemistry and Molecular Biology.

[46]  T. Willson,et al.  Crystal Structure of the Glucocorticoid Receptor Ligand Binding Domain Reveals a Novel Mode of Receptor Dimerization and Coactivator Recognition , 2002, Cell.

[47]  Liang Xia,et al.  Functional analysis of 44 mutant androgen receptors from human prostate cancer. , 2002, Cancer research.

[48]  E. Kirk,et al.  The activating enzyme of NEDD8 inhibits steroid receptor function. , 2002, Molecular endocrinology.

[49]  W J Kleijer,et al.  Genotype versus phenotype in families with androgen insensitivity syndrome. , 2001, The Journal of clinical endocrinology and metabolism.

[50]  Howard M. Einspahr,et al.  Crystallographic structures of the ligand-binding domains of the androgen receptor and its T877A mutant complexed with the natural agonist dihydrotestosterone , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[51]  Peter Scholz,et al.  Structural Evidence for Ligand Specificity in the Binding Domain of the Human Androgen Receptor , 2000, The Journal of Biological Chemistry.

[52]  P. Chambon,et al.  Crystal structure of a heterodimeric complex of RAR and RXR ligand-binding domains. , 2000, Molecular cell.

[53]  P. Sigler,et al.  Atomic structure of progesterone complexed with its receptor , 1998, Nature.

[54]  P B Sigler,et al.  Crystallographic comparison of the estrogen and progesterone receptor's ligand binding domains. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[55]  Zbigniew Dauter,et al.  Molecular basis of agonism and antagonism in the oestrogen receptor , 1997, Nature.

[56]  P. Chambon,et al.  A mutation mimicking ligand‐induced conformational change yields a constitutive RXR that senses allosteric effects in heterodimers , 1997, The EMBO journal.

[57]  E. Langley,et al.  Evidence for an Anti-parallel Orientation of the Ligand-activated Human Androgen Receptor Dimer (*) , 1995, The Journal of Biological Chemistry.

[58]  I. Polikarpov,et al.  Nuclear receptor full-length architectures: confronting myth and illusion with high resolution. , 2015, Trends in biochemical sciences.

[59]  A. Houtsmuller,et al.  FRAP and FRET methods to study nuclear receptors in living cells. , 2009, Methods in molecular biology.

[60]  C. Migeon,et al.  Human androgen insensitivity due to point mutations encoding amino acid substitutions in the androgen receptor steroid‐binding domain , 1995, Human mutation.

[61]  L Pinsky,et al.  The androgen receptor gene mutations database. , 1994, Nucleic acids research.