Blind Deconvolution for Poissonian Blurred Image With Total Variation and L0-Norm Gradient Regularizations

This paper proposes a regularized blind deconvolution method for restoring Poissonian blurred image. The problem is formulated by utilizing the ${L}_{0}$ -norm of image gradients and total variation (TV) to regularize the latent image and point spread function (PSF), respectively, and combining them with the negative logarithmic Poisson log-likelihood. To solve the problem, we propose an approach which combines the methods of variable splitting and Lagrange multiplier to convert the original problem into three sub-problems, and then design an alternating minimization algorithm which incorporates the estimation of PSF and latent image as well as the updation of Lagrange multiplier into account. We also design a non-blind deconvolution method based on TV regularization to further improve the quality of the restored image. Experimental results on both synthetic and real-world Poissonian blurred images show that the proposed method can achieve restored images of very high quality, which is competitive with or even better than some state of the art methods.

[1]  Frédo Durand,et al.  Understanding and evaluating blind deconvolution algorithms , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[2]  L. Lucy An iterative technique for the rectification of observed distributions , 1974 .

[3]  Hui Ma,et al.  Image Deblurring with Blurred / Noisy Image Pairs , 2013 .

[4]  Mario Bertero,et al.  Introduction to Inverse Problems in Imaging , 1998 .

[5]  P. Green On Use of the EM Algorithm for Penalized Likelihood Estimation , 1990 .

[6]  Mário A. T. Figueiredo,et al.  Deconvolution of Poissonian images using variable splitting and augmented Lagrangian optimization , 2009, 2009 IEEE/SP 15th Workshop on Statistical Signal Processing.

[7]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[8]  William H. Richardson,et al.  Bayesian-Based Iterative Method of Image Restoration , 1972 .

[9]  Qi Li,et al.  Non-blind image deconvolution using natural image gradient prior , 2013 .

[10]  Xinbo Gao,et al.  Natural Image Dehazing Based on L0 Gradient Minimization , 2015, IScIDE.

[11]  Seungyong Lee,et al.  Fast motion deblurring , 2009, ACM Trans. Graph..

[12]  Giuseppe Vicidomini,et al.  Automatic deconvolution of 4Pi-microscopy data with arbitrary phase. , 2009, Optics letters.

[13]  Houzhang Fang,et al.  Poissonian Image Deconvolution via Sparse and Redundant Representations and Framelet Regularization , 2014 .

[14]  Jian Sun,et al.  Progressive inter-scale and intra-scale non-blind image deconvolution , 2008, SIGGRAPH 2008.

[15]  Ting-Zhu Huang,et al.  A nonstationary accelerating alternating direction method for frame-based Poissonian image deblurring , 2019, J. Comput. Appl. Math..

[16]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[17]  Junfeng Yang,et al.  A New Alternating Minimization Algorithm for Total Variation Image Reconstruction , 2008, SIAM J. Imaging Sci..

[18]  Michael Elad,et al.  Sparse and Redundant Representations - From Theory to Applications in Signal and Image Processing , 2010 .

[19]  Ting-Zhu Huang,et al.  High-order total variation-based Poissonian image deconvolution with spatially adapted regularization parameter , 2017 .

[20]  Laure Blanc-Féraud,et al.  Sparse Poisson Noisy Image Deblurring , 2012, IEEE Transactions on Image Processing.

[21]  José M. Bioucas-Dias,et al.  Restoration of Poissonian Images Using Alternating Direction Optimization , 2010, IEEE Transactions on Image Processing.

[22]  D. A. Fish,et al.  Blind deconvolution by means of the Richardson-Lucy algorithm. , 1995 .

[23]  Dai-Qiang Chen,et al.  Regularized Generalized Inverse Accelerating Linearized Alternating Minimization Algorithm for Frame-Based Poissonian Image Deblurring , 2014, SIAM J. Imaging Sci..

[24]  Edmund Y Lam,et al.  Maximum a posteriori blind image deconvolution with Huber-Markov random-field regularization. , 2009, Optics letters.

[25]  Yi Chang,et al.  Blind Poissonian images deconvolution with framelet regularization. , 2013, Optics letters.

[26]  Ming-Hsuan Yang,et al.  $L_0$ -Regularized Intensity and Gradient Prior for Deblurring Text Images and Beyond , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Qi Li,et al.  A piecewise local regularized Richardson–Lucy algorithm for remote sensing image deconvolution , 2011 .

[28]  Brendt Wohlberg,et al.  Efficient Minimization Method for a Generalized Total Variation Functional , 2009, IEEE Transactions on Image Processing.

[29]  Hai Liu,et al.  Richardson–Lucy blind deconvolution of spectroscopic data with wavelet regularization , 2015 .

[30]  Li Xu,et al.  Unnatural L0 Sparse Representation for Natural Image Deblurring , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[31]  Frédo Durand,et al.  Image and depth from a conventional camera with a coded aperture , 2007, ACM Trans. Graph..

[32]  Cewu Lu,et al.  Image smoothing via L0 gradient minimization , 2011, ACM Trans. Graph..

[33]  Li Xu,et al.  Two-Phase Kernel Estimation for Robust Motion Deblurring , 2010, ECCV.

[34]  Gabriele Steidl,et al.  Deblurring Poissonian images by split Bregman techniques , 2010, J. Vis. Commun. Image Represent..

[35]  S. Yun,et al.  Frame-based Poisson image restoration using a proximal linearized alternating direction method , 2013 .

[36]  Mario Bertero,et al.  The Stability of Inverse Problems , 1980 .

[37]  P. Green Bayesian reconstructions from emission tomography data using a modified EM algorithm. , 1990, IEEE transactions on medical imaging.

[38]  Li Qi,et al.  An improved Richardson–Lucy algorithm based on local prior , 2010 .

[39]  Zhenmin Tang,et al.  Fast non-blind deconvolution method for blurred image corrupted by poisson noise , 2017, 2017 International Conference on Progress in Informatics and Computing (PIC).

[40]  Xiaojin Gong,et al.  A L₀ sparse analysis prior for blind poissonian image deconvolution. , 2014, Optics express.

[41]  Michael Elad,et al.  Bi-l0-l2-norm regularization for blind motion deblurring , 2014, J. Vis. Commun. Image Represent..

[42]  Yide Zhang,et al.  A Poisson-Gaussian Denoising Dataset With Real Fluorescence Microscopy Images , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[43]  Frédo Durand,et al.  Efficient marginal likelihood optimization in blind deconvolution , 2011, CVPR 2011.

[44]  Giuseppe Vicidomini,et al.  Automatic deconvolution in 4Pi-microscopy with variable phase. , 2010, Optics express.

[45]  Françoise Viallefont-Robinet Edge method for on-orbit defocus assessment. , 2010, Optics express.

[46]  Françoise Viallefont-Robinet,et al.  Improvement of the edge method for on-orbit MTF measurement. , 2010, Optics express.

[47]  J. Bardsley,et al.  Tikhonov regularized Poisson likelihood estimation: theoretical justification and a computational method , 2008 .

[48]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[49]  Donald Geman,et al.  Constrained Restoration and the Recovery of Discontinuities , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[50]  Rob Fergus,et al.  Blind deconvolution using a normalized sparsity measure , 2011, CVPR 2011.

[51]  Josiane Zerubia,et al.  Richardson–Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution , 2006, Microscopy research and technique.

[52]  Ming-Hsuan Yang,et al.  Deblurring Text Images via L0-Regularized Intensity and Gradient Prior , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[53]  Zhenmin Tang,et al.  Fast total variation deconvolution for blurred image contaminated by Poisson noise , 2016, J. Vis. Commun. Image Represent..