Large In-Plane and Vertical Piezoelectricity in Janus Transition Metal Dichalchogenides.

Piezoelectricity in 2D van der Waals materials has received considerable interest because of potential applications in nanoscale energy harvesting, sensors, and actuators. However, in all the systems studied to date, strain and electric polarization are confined to the basal plane, limiting the operation of piezoelectric devices. In this paper, based on ab initio calculations, we report a 2D materials system, namely, the recently synthesized Janus MXY (M = Mo or W, X/Y = S, Se, or Te) monolayer and multilayer structures, with large out-of-plane piezoelectric polarization. For MXY monolayers, both strong in-plane and much weaker out-of-plane piezoelectric polarizations can be induced by a uniaxial strain in the basal plane. For multilayer MXY, we obtain a very strong out-of-plane piezoelectric polarization when strained transverse to the basal plane, regardless of the stacking sequence. The out-of-plane piezoelectric coefficient d33 is found to be strongest in multilayer MoSTe (5.7-13.5 pm/V depending on the stacking sequence), which is larger than that of the commonly used 3D piezoelectric material AlN (d33 = 5.6 pm/V); d33 in other multilayer MXY structures are a bit smaller, but still comparable. Our study reveals the potential for utilizing piezoelectric 2D materials and their van der Waals multilayers in device applications.

[1]  D. Muller,et al.  Janus monolayers of transition metal dichalcogenides. , 2017, Nature nanotechnology.

[2]  John A. Rogers,et al.  Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation , 2016 .

[3]  Zhong Lin Wang,et al.  Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics , 2016 .

[4]  I. Oh,et al.  Piezoelectric thin films: an integrated review of transducers and energy harvesting , 2016 .

[5]  Leslie Y Yeo,et al.  Acoustically-Driven Trion and Exciton Modulation in Piezoelectric Two-Dimensional MoS2. , 2016, Nano letters.

[6]  Richard G Hennig,et al.  Ab Initio Prediction of Piezoelectricity in Two-Dimensional Materials. , 2015, ACS nano.

[7]  Li Yang,et al.  Giant piezoelectricity of monolayer group IV monochalcogenides: SnSe, SnS, GeSe, and GeS , 2015, 1508.06222.

[8]  V. Shenoy,et al.  Elastic Deformations in 2D van der waals Heterostructures and their Impact on Optoelectronic Properties: Predictions from a Multiscale Computational Approach , 2015, Scientific Reports.

[9]  Wenbin Li,et al.  Piezoelectricity in two-dimensional group-III monochalcogenides , 2015, Nano Research.

[10]  Y. Wang,et al.  Observation of piezoelectricity in free-standing monolayer MoS₂. , 2015, Nature nanotechnology.

[11]  Zhong Lin Wang,et al.  Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics , 2014, Nature.

[12]  P. Feng,et al.  Electrical breakdown of multilayer MoS2 field-effect transistors with thickness-dependent mobility. , 2014, Nanoscale.

[13]  H. B. Weber,et al.  Dislocations in bilayer graphene , 2013, Nature.

[14]  E. Kaxiras,et al.  Electrically driven tuning of the dielectric constant in MoS2 layers. , 2013, ACS nano.

[15]  Y. C. Cheng,et al.  Spin-orbit–induced spin splittings in polar transition metal dichalcogenide monolayers , 2013 .

[16]  Evan J. Reed,et al.  Intrinsic Piezoelectricity in Two-Dimensional Materials , 2012 .

[17]  Stefan Grimme,et al.  Effect of the damping function in dispersion corrected density functional theory , 2011, J. Comput. Chem..

[18]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[19]  Lukasz Nieradko,et al.  AlN as an actuation material for MEMS applications: The case of AlN driven multilayered cantilevers , 2008 .

[20]  D. Vanderbilt,et al.  Importance of second-order piezoelectric effects in zinc-blende semiconductors. , 2006, Physical review letters.

[21]  Astronomy,et al.  Systematic treatment of displacements, strains, and electric fields in density-functional perturbation theory , 2005, cond-mat/0501548.

[22]  Jerry R. Meyer,et al.  Band parameters for nitrogen-containing semiconductors , 2003 .

[23]  N. Sai,et al.  Microscopic theory for nanotube piezoelectricity , 2003, cond-mat/0308583.

[24]  C. Steinem,et al.  Piezoelectric Mass-Sensing Devices as Biosensors-An Alternative to Optical Biosensors? , 2000, Angewandte Chemie.

[25]  Neil M. White,et al.  Thick-film printing of PZT onto silicon , 1997 .

[26]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[27]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[28]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[29]  D. Vanderbilt,et al.  Theory of polarization of crystalline solids. , 1993, Physical review. B, Condensed matter.

[30]  V. E. Bottom Measurement of the Piezoelectric Coefficient of Quartz Using the Fabry‐Perot Dilatometer , 1970 .

[31]  Enrico Clementi,et al.  Atomic Screening Constants from SCF Functions. II. Atoms with 37 to 86 Electrons , 1967 .