Avoiding selection bias in gravitational wave astronomy

When searching for gravitational waves in the data from ground-based gravitational wave detectors it is common to use a detection threshold to reduce the number of background events which are unlikely to be the signals of interest. However, imposing such a threshold will also discard some real signals with low amplitude, which can potentially bias any inferences drawn from the population of detected signals. We show how this selection bias is naturally avoided by using the full information from the search, considering both the selected data and our ignorance of the data that are thrown away, and considering all relevant signal and noise models. This approach produces unbiased estimates of parameters even in the presence of false alarms and incomplete data. This can be seen as an extension of previous methods into the high false rate regime where we are able to show that the quality of parameter inference can be optimised by lowering thresholds and increasing the false alarm rate.

[1]  An Overview of Gravitational-Wave Sources , 2002, gr-qc/0204090.

[2]  Thomas E. Lutz,et al.  ON THE USE OF TRIGONOMETRIC PARALLAXES FOR THE CALIBRATION OF LUMINOSITY SYSTEMS: THEORY , 1973 .

[3]  A. Szalay,et al.  A general analytical solution to the problem of Malmquist bias due to lognormal distance errors , 1992 .

[4]  A. Collaboration ANTARES: The first undersea neutrino telescope , 2011, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[5]  Armin Rest,et al.  IMPROVED DARK ENERGY CONSTRAINTS FROM ∼100 NEW CfA SUPERNOVA TYPE Ia LIGHT CURVES , 2009, 0901.4804.

[6]  C. Messenger,et al.  Measuring a cosmological distance-redshift relationship using only gravitational wave observations of binary neutron star coalescences. , 2011, Physical review letters.

[7]  David Burstein,et al.  Spectroscopy and photometry of elliptical galaxies. V - Galaxy streaming toward the new supergalactic center , 1988 .

[8]  Nuno C. Santos,et al.  Extrasolar Planets: Statistical properties of exoplanets , 2007 .

[9]  W. D. Pozzo Inference of cosmological parameters from gravitational waves: Applications to second generation interferometers , 2011, 1108.1317.

[10]  B. Kelly Some Aspects of Measurement Error in Linear Regression of Astronomical Data , 2007, 0705.2774.

[11]  S. Buitink,et al.  Detecting ultra high energy neutrinos with LOFAR , 2012 .

[12]  B. S. Sathyaprakash,et al.  Searching for gravitational waves from binary coalescence , 2012, 1208.3491.

[13]  I. Mandel Parameter estimation on gravitational waves from multiple coalescing binaries , 2009, 0912.5531.

[14]  A. Heijboer,et al.  Search for neutrino emission from gamma-ray flaring blazars with the ANTARES telescope , 2011, 1111.3473.

[15]  G. M. Harry,et al.  Advanced LIGO: the next generation of gravitational wave detectors , 2010 .

[16]  A. Eddington,et al.  The correction of statistics for accidental error , 1940 .

[17]  E. Phinney,et al.  AN OVERVIEW OF GRAVITATIONAL-WAVE SOURCES , 2022 .

[18]  Francesco Marin,et al.  Einstein gravitational wave Telescope conceptual design study , 2011 .

[19]  A. Eddington,et al.  On a Formula for Correcting Statistics for the Effects of a known Probable Error of Observation , 1913 .

[20]  Towards a generic test of the strong field dynamics of general relativity using compact binary coalescence: further investigations , 2011, 1111.5274.

[21]  Stephen R. Taylor,et al.  Cosmology with the lights off: Standard sirens in the Einstein Telescope era , 2012, 1204.6739.

[22]  IfA,et al.  The Observed Growth of Massive Galaxy Clusters I: Statistical Methods and Cosmological Constraints , 2009, 0909.3098.

[23]  J. P. Rodrigues,et al.  Calibration and characterization of the IceCube photomultiplier tube , 2010, 1002.2442.

[24]  K. Kuroda,et al.  The status of LCGT , 2006 .

[25]  C. Broeck,et al.  Towards a generic test of the strong field dynamics of general relativity using compact binary coalescence: Further investigations , 2011, 1111.5274.

[26]  M. Hendry,et al.  Bias of cosmological distance estimators , 1990 .

[27]  Jonathan R. Gair,et al.  Cosmology using advanced gravitational-wave detectors alone , 2011, 1108.5161.

[28]  The LIGO Scientific Collaboration,et al.  All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run , 2010, 1002.1036.

[29]  K. S. Thorne,et al.  Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors , 2010, 1003.2480.

[30]  S. Fairhurst,et al.  The loudest event statistic: general formulation, properties and applications , 2007, 0710.0465.

[31]  W. D. Pozzo,et al.  Testing General Relativity using Bayesian model selection: Applications to observations of gravitational waves from compact binary systems , 2011, 1101.1391.

[32]  J. Willick,et al.  Maximum Likelihood Comparison of Tully-Fisher and Redshift Data. II. Results from an Expanded Sample , 1998, astro-ph/9801307.

[33]  August E. Evrard,et al.  Cosmological Parameters from Observations of Galaxy Clusters , 2011, 1103.4829.

[34]  F. T. Collaboration,et al.  Search for neutrino emission from gamma-ray flaring blazars with the ANTARES telescope , 2011, Astroparticle Physics.

[35]  Carlos Cunha,et al.  Cross-calibration of cluster mass-observables , 2008, 0812.0583.

[36]  et al,et al.  Search for gravitational waves from binary inspirals in S3 and S4 LIGO data , 2007, 0704.3368.