X-SQL: reinforce schema representation with context

In this work, we present X-SQL, a new network architecture for the problem of parsing natural language to SQL query. X-SQL proposes to enhance the structural schema representation with the contextual output from BERT-style pre-training model, and together with type information to learn a new schema representation for down-stream tasks. We evaluated X-SQL on the WikiSQL dataset and show its new state-of-the-art performance.

[1]  Seunghyun Park,et al.  A Comprehensive Exploration on WikiSQL with Table-Aware Word Contextualization , 2019, ArXiv.

[2]  Xiaodong Liu,et al.  Multi-Task Deep Neural Networks for Natural Language Understanding , 2019, ACL.

[3]  Tao Yu,et al.  Spider: A Large-Scale Human-Labeled Dataset for Complex and Cross-Domain Semantic Parsing and Text-to-SQL Task , 2018, EMNLP.

[4]  Dawn Xiaodong Song,et al.  SQLNet: Generating Structured Queries From Natural Language Without Reinforcement Learning , 2017, ArXiv.

[5]  Weizhu Chen,et al.  IncSQL: Training Incremental Text-to-SQL Parsers with Non-Deterministic Oracles , 2018, ArXiv.

[6]  Po-Sen Huang,et al.  Execution-Guided Neural Program Decoding , 2018, ArXiv.

[7]  Omer Levy,et al.  GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding , 2018, BlackboxNLP@EMNLP.

[8]  Ming-Wei Chang,et al.  BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.

[9]  Tao Yu,et al.  TypeSQL: Knowledge-Based Type-Aware Neural Text-to-SQL Generation , 2018, NAACL.

[10]  Richard Socher,et al.  Seq2SQL: Generating Structured Queries from Natural Language using Reinforcement Learning , 2018, ArXiv.

[11]  Dragomir R. Radev,et al.  Improving Text-to-SQL Evaluation Methodology , 2018, ACL.

[12]  Mirella Lapata,et al.  Coarse-to-Fine Decoding for Neural Semantic Parsing , 2018, ACL.

[13]  Alec Radford,et al.  Improving Language Understanding by Generative Pre-Training , 2018 .