Emergence of ontological relations from visual data with Self-Organizing Maps

In this paper we examine how Self-Organizing Maps (SOMs) can be used in detecting and describing emergent ontological relations between semantic objects and object classes in a visual database. The ontological relations we have studied include co-existence, taxonomies of visual and semantic similarity and spatial relationships. The used database contains 2618 images, each of which belongs to one or more of ten predefined semantic classes.

[1]  Anthony Hoogs,et al.  Video content annotation using visual analysis and a large semantic knowledgebase , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[2]  Jorma Laaksonen,et al.  Techniques for Still Image Scene Classification and Object Detection , 2006, ICANN.

[3]  David G. Elliman,et al.  Automatic Derivation of On-line Document Ontologies , 2001 .

[4]  Pádraig Cunningham,et al.  Ontology Discovery for the Semantic Web Using Hierarchical Clustering , 2002 .

[5]  Alfred V. Aho,et al.  Data Structures and Algorithms , 1983 .

[6]  Dave Elliman,et al.  Visualizing ontology components through self-organizing maps , 2002, Proceedings Sixth International Conference on Information Visualisation.

[7]  Alireza Khotanzad,et al.  Invariant Image Recognition by Zernike Moments , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Marcel Worring,et al.  Building a visual ontology for video retrieval , 2005, MULTIMEDIA '05.

[9]  Fei Song,et al.  Knowledge-Based Approaches to Query Expansion in Information Retrieval , 1996, Canadian Conference on AI.

[10]  G. B. Smith,et al.  Fuzzy spatial data mining , 2002, 2002 Annual Meeting of the North American Fuzzy Information Processing Society Proceedings. NAFIPS-FLINT 2002 (Cat. No. 02TH8622).

[11]  Erkki Oja,et al.  Self-Organising Maps as a Relevance Feedback Technique in Content-Based Image Retrieval , 2001, Pattern Analysis & Applications.

[12]  A. Ralescu,et al.  Spatial organization in 2D images , 1994, Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference.

[13]  Alberto Del Bimbo,et al.  Automatic video annotation using ontologies extended with visual information , 2005, MULTIMEDIA '05.

[14]  Jiawei Han,et al.  Spatial Data Mining: Progress and Challenges , 1996, Workshop on Research Issues on Data Mining and Knowledge Discovery.

[15]  Erkki Oja,et al.  PicSOM-self-organizing image retrieval with MPEG-7 content descriptors , 2002, IEEE Trans. Neural Networks.

[16]  Jorma Laaksonen,et al.  Focusing Keywords to Automatically Extracted Image Segments Using Self-Organising Maps , 2007 .

[17]  Dan I. Moldovan,et al.  Exploiting ontologies for automatic image annotation , 2005, SIGIR '05.

[18]  John R. Smith,et al.  Semi-automatic, data-driven construction of multimedia ontologies , 2003, 2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698).

[19]  Alan F. Smeaton,et al.  Clustering-Based Analysis of Semantic Concept Models for Video Shots , 2006, 2006 IEEE International Conference on Multimedia and Expo.

[20]  Shih-Fu Chang,et al.  Semantic knowledge construction from annotated image collections , 2002, Proceedings. IEEE International Conference on Multimedia and Expo.

[21]  L. R. Rasmussen,et al.  In information retrieval: data structures and algorithms , 1992 .

[22]  Christiane Fellbaum,et al.  Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.

[23]  Patrick Henry Winston,et al.  Learning structural descriptions from examples , 1970 .

[24]  Latifur Khan,et al.  Automatic Ontology Derivation Using Clustering for Image Classification , 2002, Multimedia Information Systems.

[25]  Isabelle Bloch,et al.  Fuzzy spatial relationships for image processing and interpretation: a review , 2005, Image Vis. Comput..

[26]  Latifur Khan,et al.  Image annotations by combining multiple evidence & wordNet , 2005, ACM Multimedia.

[27]  Xiaomei Yang,et al.  MINING FUZZY SPATIAL CONFIGURATION RULES : METHODS AND APPLICATIONS , 2005 .