Hybrid Spectrum Sensing Architecture for Cognitive Radio Equipment

Spectrum sensing is the key function in implementing cognitive radio, which enables secondary users to identify and utilize vacant spectrum resource allocated to primary users. Recent studies have proposed four major sensing methods, including matched filter, energy, feature, and eigenvalue-based detectors. However, there are some drawbacks along with them. In this paper, we propose a hybrid architecture, associating energy and cyclostationary detectors, for spectrum sensing that improves the ability of conventional energy detector to detect the primary user in the presence of noise uncertainty. In a constant noise environment, the performance of the proposed detector approaches that of an ideal radiometer.

[1]  H. V. Trees Detection, Estimation, And Modulation Theory , 2001 .

[2]  William A. Gardner,et al.  Signal interception: a unifying theoretical framework for feature detection , 1988, IEEE Trans. Commun..

[3]  David Middleton Canonically optimum threshold detection , 1966, IEEE Trans. Inf. Theory.

[4]  Hüseyin Arslan,et al.  A survey of spectrum sensing algorithms for cognitive radio applications , 2009, IEEE Communications Surveys & Tutorials.

[5]  Harry L. Van Trees,et al.  Detection, Estimation, and Modulation Theory, Part I , 1968 .

[6]  Pascal Bianchi,et al.  Cooperative spectrum sensing using random matrix theory , 2008, 2008 3rd International Symposium on Wireless Pervasive Computing.

[7]  David Middleton,et al.  Optimum Threshold Detection , 1966 .

[8]  Mario Tanda,et al.  Signal interception in non-Gaussian noise , 1992, IEEE Trans. Commun..

[9]  J. I. Mararm,et al.  Energy Detection of Unknown Deterministic Signals , 2022 .

[10]  Philippe Rostaing Detection de signaux modules en exploitant leurs proprietes cyclostationnaires : application aux signaux sonar , 1997 .

[11]  Ian F. Akyildiz,et al.  NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey , 2006, Comput. Networks.

[12]  A. Sonnenschein,et al.  Radiometric detection of spreadspectrum signals in noise of uncertain power , 1992 .

[13]  A. Izenman Introduction to Random Processes, With Applications to Signals and Systems , 1987 .

[14]  William A. Gardner,et al.  Signal interception: performance advantages of cyclic-feature detectors , 1992, IEEE Trans. Commun..

[15]  Kimmo Kansanen,et al.  Blind Spectrum Sensing for Cognitive Radio Based on Signal Space Dimension Estimation , 2009, 2009 IEEE International Conference on Communications.

[16]  Georgios B. Giannakis,et al.  Statistical tests for presence of cyclostationarity , 1994, IEEE Trans. Signal Process..

[17]  Jacques Palicot,et al.  Enhanced hybrid spectrum sensing architecture for cognitive radio equipment , 2011, 2011 XXXth URSI General Assembly and Scientific Symposium.

[18]  Joseph Mitola,et al.  Cognitive Radio An Integrated Agent Architecture for Software Defined Radio , 2000 .

[19]  William A. Gardner,et al.  Degrees of cyclostationarity and their application to signal detection and estimation , 1991, Signal Process..

[20]  M. Ghozzi,et al.  Détection cyclostationnaire des bandes de fréquences libres , 2008 .

[21]  Neil L. Gerr,et al.  GRAPHICAL METHODS FOR DETERMINING THE PRESENCE OF PERIODIC CORRELATION , 1991 .

[22]  M. Melamed Detection , 2021, SETI: Astronomy as a Contact Sport.

[23]  Friedrich Jondral,et al.  Air interface recognition for a software radio system exploiting cyclostationarity , 2004, 2004 IEEE 15th International Symposium on Personal, Indoor and Mobile Radio Communications (IEEE Cat. No.04TH8754).