PYLFIRE: Python implementation of likelihood-free inference by ratio estimation
暂无分享,去创建一个
Jukka Corander | Ulpu Remes | Henri Pesonen | Owen Thomas | Jan Kokko | J. Corander | Owen Thomas | Ulpu Remes | Henri Pesonen | Jan Kokko
[1] David J. Nott,et al. Robust Bayesian synthetic likelihood via a semi-parametric approach , 2018, Stat. Comput..
[2] Matthew A. Nunes,et al. abctools: An R Package for Tuning Approximate Bayesian Computation Analyses , 2015, R J..
[3] Jukka Corander,et al. Likelihood-Free Inference by Ratio Estimation , 2016, Bayesian Analysis.
[4] David T. Frazier,et al. Bayesian Synthetic Likelihood , 2017, 2305.05120.
[5] Aki Vehtari,et al. ELFI: Engine for Likelihood Free Inference , 2016, J. Mach. Learn. Res..
[6] Trevor Hastie,et al. Regularization Paths for Generalized Linear Models via Coordinate Descent. , 2010, Journal of statistical software.
[7] Takafumi Kanamori,et al. Density Ratio Estimation in Machine Learning , 2012 .
[8] Yanan Fan,et al. Handbook of Approximate Bayesian Computation , 2018 .
[9] Christopher C. Drovandi,et al. Accelerating Bayesian Synthetic Likelihood With the Graphical Lasso , 2019, Journal of Computational and Graphical Statistics.
[10] M. Gutmann,et al. Fundamentals and Recent Developments in Approximate Bayesian Computation , 2016, Systematic biology.
[11] S. Wood. Statistical inference for noisy nonlinear ecological dynamic systems , 2010, Nature.
[12] Christopher Drovandi,et al. BSL: An R Package for Efficient Parameter Estimation for Simulation-Based Models via Bayesian Synthetic Likelihood , 2019, J. Stat. Softw..
[13] Andrew M. Stuart,et al. How Deep Are Deep Gaussian Processes? , 2017, J. Mach. Learn. Res..