Polynomials Associated with Equilibria of Affine Toda-Sutherland Systems

An affine Toda-Sutherland system is aquasi-exactly solvable multi-particle dynamics based on an affine simple root system. It is a ‘cross’ between two well-known integrable multi-particle dynamics, an affine Toda moleculeand a Sutherland system. Polynomials describing the equilibrium positions of affine Toda-Sutherland systems are determined for all affine simple root systems.

[1]  Rene F. Swarttouw,et al.  Orthogonal Polynomials , 2005, Series and Products in the Development of Mathematics.

[2]  R. Sasaki,et al.  Equilibria of ‘discrete’ integrable systems and deformation of classical orthogonal polynomials , 2004, hep-th/0407155.

[3]  I. Loris,et al.  Affine Toda-Sutherland Systems , 2003, hep-th/0309077.

[4]  I. Loris,et al.  Quantum and classical eigenfunctions in Calogero and Sutherland systems , 2003, hep-th/0308052.

[5]  I. Loris,et al.  Quantum vs classical mechanics: role of elementary excitations , 2003, quant-ph/0308040.

[6]  R. Sasaki,et al.  Quantum versus classical integrability in Ruijsenaars–Schneider systems , 2003, hep-th/0305120.

[7]  I. Loris,et al.  Quantum & Classical Eigenfunctions in Calogero & Sutherland Systems , 2003 .

[8]  R. Sasaki,et al.  Polynomials Associated with Equilibrium Positions in Calogero-Moser Systems , 2002, hep-th/0206172.

[9]  R. Sasaki,et al.  Quantum versus classical integrability in Calogero-Moser systems , 2002, hep-th/0204039.

[10]  K. Takasaki,et al.  CORRIGENDUM: Quantum Inozemtsev model, quasi-exact solvability and N-fold supersymmetry , 2001, hep-th/0109008.

[11]  A. Pocklington,et al.  Quantum Calogero-Moser models: integrability for all root systems , 2000, hep-th/0005277.

[12]  A. Bordner,et al.  Calogero-Moser models. V - Supersymmetry and quantum Lax pair - , 1999, hep-th/9910033.

[13]  A. Ushveridze Quasi-Exactly Solvable Models in Quantum Mechanics , 1994 .

[14]  R. Sasaki,et al.  AFFINE TODA FIELD-THEORY AND EXACT S-MATRICES , 1990 .

[15]  A. Turbiner Quasi-exactly-solvable problems andsl(2) algebra , 1988 .

[16]  S. Ruijsenaars Complete integrability of relativistic Calogero-Moser systems and elliptic function identities , 1987 .

[17]  S. Ruijsenaars,et al.  A new class of integrable systems and its relation to solitons , 1986 .

[18]  F. Calogero Equilibrium configuration of the one-dimensionaln-body problem with quadratic and inversely quadratic pair potentials , 1977 .

[19]  P. Calogero On the zeros of the classical polynomials , 1977 .

[20]  Francesco Calogero,et al.  Solution of the One‐Dimensional N‐Body Problems with Quadratic and/or Inversely Quadratic Pair Potentials , 1971 .

[21]  B. Sutherland Exact results for a quantum many body problem in one-dimension , 1971 .

[22]  M. Roberts Sur quelques théorémés d’algébre , 1861 .