Polynomials Associated with Equilibria of Affine Toda-Sutherland Systems
暂无分享,去创建一个
[1] Rene F. Swarttouw,et al. Orthogonal Polynomials , 2005, Series and Products in the Development of Mathematics.
[2] R. Sasaki,et al. Equilibria of ‘discrete’ integrable systems and deformation of classical orthogonal polynomials , 2004, hep-th/0407155.
[3] I. Loris,et al. Affine Toda-Sutherland Systems , 2003, hep-th/0309077.
[4] I. Loris,et al. Quantum and classical eigenfunctions in Calogero and Sutherland systems , 2003, hep-th/0308052.
[5] I. Loris,et al. Quantum vs classical mechanics: role of elementary excitations , 2003, quant-ph/0308040.
[6] R. Sasaki,et al. Quantum versus classical integrability in Ruijsenaars–Schneider systems , 2003, hep-th/0305120.
[7] I. Loris,et al. Quantum & Classical Eigenfunctions in Calogero & Sutherland Systems , 2003 .
[8] R. Sasaki,et al. Polynomials Associated with Equilibrium Positions in Calogero-Moser Systems , 2002, hep-th/0206172.
[9] R. Sasaki,et al. Quantum versus classical integrability in Calogero-Moser systems , 2002, hep-th/0204039.
[10] K. Takasaki,et al. CORRIGENDUM: Quantum Inozemtsev model, quasi-exact solvability and N-fold supersymmetry , 2001, hep-th/0109008.
[11] A. Pocklington,et al. Quantum Calogero-Moser models: integrability for all root systems , 2000, hep-th/0005277.
[12] A. Bordner,et al. Calogero-Moser models. V - Supersymmetry and quantum Lax pair - , 1999, hep-th/9910033.
[13] A. Ushveridze. Quasi-Exactly Solvable Models in Quantum Mechanics , 1994 .
[14] R. Sasaki,et al. AFFINE TODA FIELD-THEORY AND EXACT S-MATRICES , 1990 .
[15] A. Turbiner. Quasi-exactly-solvable problems andsl(2) algebra , 1988 .
[16] S. Ruijsenaars. Complete integrability of relativistic Calogero-Moser systems and elliptic function identities , 1987 .
[17] S. Ruijsenaars,et al. A new class of integrable systems and its relation to solitons , 1986 .
[18] F. Calogero. Equilibrium configuration of the one-dimensionaln-body problem with quadratic and inversely quadratic pair potentials , 1977 .
[19] P. Calogero. On the zeros of the classical polynomials , 1977 .
[20] Francesco Calogero,et al. Solution of the One‐Dimensional N‐Body Problems with Quadratic and/or Inversely Quadratic Pair Potentials , 1971 .
[21] B. Sutherland. Exact results for a quantum many body problem in one-dimension , 1971 .
[22] M. Roberts. Sur quelques théorémés d’algébre , 1861 .